Indigenous knowledge systems hold detailed information on current and past environments that can inform ecological understanding as well as contemporary environmental management. Despite its applicability, there are limited examples of indigenous knowledge being incorporated in species distribution models, which are widely used in the ecological sciences. In a collaborative manner, we designed a structured elicitation process and statistical framework to combine indigenous knowledge with survey data to model the distribution of a threatened and culturally significant species (greater bilby or mankarr [Macrotis lagotis]). We used Martu (Aboriginal people of the Australian western deserts) occurrence knowledge and presence data from track-based surveys to create predictive species distribution models with the Maxent program. Predictions of species distribution based on Martu knowledge were broader than those created with survey data. Together the Martu and survey models showed potential local declines, which were supported by Martu observation. Both data types were influenced by sampling bias that appeared to affect model predictions and performance. Martu provided additional information on habitat associations and locations of decline and descriptions of the ecosystem dynamics and disturbance regimes that influence occupancy. We concluded that intercultural approaches that draw on multiple sources of knowledge and information types may improve species distribution modeling and inform management of threatened or culturally significant species.
Summary Indigenous people are the custodians of knowledge systems that hold detailed awareness of the environment, including applications for monitoring and management to improve biodiversity and cultural outcomes. Indigenous communities are increasingly participating in programs to monitor populations of wildlife. There is a need for frameworks to guide how Indigenous priorities, aspirations and culture can be respected within monitoring programs, as well as case studies that demonstrate how Indigenous knowledge and practice can provide opportunities together with Western science practice to improve the rigour and outcomes of wildlife monitoring. Here, we describe the process of developing a monitoring program that was tailored to be carried out by Kanyirninpa Jukurrpa Indigenous ranger teams to assess the status, trend and response to the management of a threatened and culturally significant species Mankarr (Greater Bilby; Macrotis lagotis). We applied a collaborative two‐way approach, using iterative consultations, elicitations and field trials involving Indigenous and non‐Indigenous project partners to define monitoring objectives, record biocultural knowledge and tailor a sampling methodology to fit the requirements of Martu Traditional Owners. Our project focused on creating a method that would be engaging, accessible and useful for rangers who would carry out the program, and prioritized collection of relevant data for community decision‐making regarding management. We outline our key learnings for co‐design of wildlife monitoring programs on Indigenous lands. Our approach provides insights that will assist in designing other cross‐cultural or participatory monitoring programs.
In the past, when scientists encountered and studied ‘new’ environmental phenomena, they rarely considered the existing knowledge of First Peoples (also known as Indigenous or Aboriginal people). The scientific debate over the regularly spaced bare patches (so-called fairy circles) in arid grasslands of Australian deserts is a case in point. Previous researchers used remote sensing, numerical modelling, aerial images and field observations to propose that fairy circles arise from plant self-organization. Here we present Australian Aboriginal art and narratives, and soil excavation data, that suggest these regularly spaced, bare and hard circles in grasslands are pavement nests occupied by Drepanotermes harvester termites. These circles, called linyji (Manyjilyjarra language) or mingkirri (Warlpiri language), have been used by Aboriginal people in their food economies and for other domestic and sacred purposes across generations. Knowledge of the linyji has been encoded in demonstration and oral transmission, ritual art and ceremony and other media. While the exact origins of the bare circles are unclear, being buried in deep time and Jukurrpa, termites need to be incorporated as key players in a larger system of interactions between soil, water and grass. Ecologically transformative feedbacks across millennia of land use and manipulation by Aboriginal people must be accounted for. We argue that the co-production of knowledge can both improve the care and management of those systems and support intergenerational learning within and across diverse cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.