The malarial parasite remodels the host erythrocyte following invasion. Well-known examples are adhesive proteins inserted into the host erythrocyte membrane, which function as virulence factors. The modification of the host erythrocyte may be mediated by a specialized domain of the endoplasmic reticulum, or Plasmodium export compartment (PEC). Previously, monoclonal antibodies recognizing the PEC were generated and one of these monoclonal antibodies recognize a 68 kDa parasite protein. In this study, the 68 kDa protein was affinity purified and analyzed by peptide mapping using mass spectrometry. The results demonstrate that the 68 kDa protein is the P. falciparum homolog of the endoplasmic reticulum resident HSP70 called PfHSP70-2. This finding is consistent with the PEC being a domain of the endoplasmic reticulum and suggests a role for PfHSP70-2 in the export of Plasmodium proteins into the host erythrocyte.
Conditions required for the induction of cerebral malaria (CM)-like symptoms were investigated using 12 strains of rats and 5 murine malaria strains. Among various combinations, only inbred WM/Ms rats infected with P. berghei (NK65) developed neuropathological complications that closely resembled human CM cases. When young WM/Ms rats were infected with the parasites, neurologic signs were induced followed by death in 5-10 days with almost 100% incidence, whereas aged hosts revealed strong resistance. Histologically, edematous changes, occlusion of vessels, and petechial hemorrhages were found in the brain. There was an optimum dose of parasites to induce the manifestations, and a low incidence was obtained by increased or decreased inoculum size. No correlation was found between the level of parasitemia and incidence of the disease. The other 11 rat strains inoculated with this parasite showed high levels of parasitemia, but most of their infections were self-limiting or malarial death occurred without CM-like signs. Inoculation into WM/Ms rats with other murine malaria parasites, including P. chabaudi, P. vinckei, P. yoelii (17X), and P. yoelii (nigeriensis) failed to induce CM-like manifestations irrespective of the inoculation size and the degree of parasitemia. These results indicated that P. berghei (NK65)-infected WM/Ms rats represent an experimental model for CM and certain appropriate conditions are needed for its development in both parasite and host sides.
Infections with the human malaria parasite Plasmodium falciparum are characterized by cytoadherence of infected erythrocytes to the venular endothelium of several organs. Video microscopy studies have shown that at the end of the asexual life of P. falciparum, the residual body containing haemozoin is released to the extracellular environment along with merozoites, leaving behind an infected erythrocyte "ghost". It is possible that these infected erythrocyte "ghosts" could remain sequestered within the blood vessels of patients infected with P. falciparum even after merozoites have been released from infected erythrocytes. In this study an in vitro cytoadherence assay was developed to show that infected erythrocyte "ghosts" can interact with C32 melanoma cells. Adherent infected erythrocyte "ghosts" contain some of the subcellular compartments of the malaria-infected red blood cell such as the tubo-vesicular membrane network and remnants of the parasitophorous vacuolar membrane, but lack haemozoin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.