Few studies have drawn on any systematic research into the energy demand to produce polymer-based nanocomposites. Regarding the problem, it is well-known that single screw extrusion is an energy-intensive process, so the incorporation of energy meters must be considered to examine the energy efficiency of the process. In this study, the effect of a nanoclay addition on the energy demand of the extrusion process was examined by extruding recycled high-density polyethylene (rHDPE) and recycled polypropylene (rPP) with a gradual compression screw with both dispersive and distributive mixers. The rHDPE/rPP was modified by adding commercial organoclay (OMMT) (3 wt%) and olefin block copolymer (OBC) (5 wt%) as compatibilizers. The energy consumption was measured on the total energy of the extruder machine. Mass throughput (MT) and specific energy consumption (SEC) were obtained at different screw speeds (10, 20, 30, 40, 50 RPM). The SEC of OMMT and OMMT/OBC nanocomposites was 25–50% lower than rHDPE/rPP, especially at higher throughputs. X-ray diffraction (XRD) and scanning electron microscope (SEM) illustrated the degree of intercalation and dispersion of the organoclay at different screw speeds. Better organoclay intercalation and dispersion were found at lower temperatures. Rheological curves showed a decrease in the viscosity at extrusion rates of nanocomposite mixtures. Melt temperature measured at die exit was reduced in the presence of organoclay over the screw speeds studied. This work suggests that the processing of rHDPE/rPP based nanocomposites can result in minor costs when processing conditions are carefully selected.
The research of organoclays has been occurring for many years to develop and add value to these inorganic materials for several industrial applications, such as pollutant absorbers or impermeable plastics. The organoclay applications are intrinsically related to organo-modification and the structure of clays. This study shows the preparation and characterization of organoclays produced by a nontronite type clay (calcic bentonite) from the Tosagua Formation in the peninsula of Santa Elena in Ecuador. These clays were purified and centrifuged before organo-treatment. The purification and separation processes were used to remove organic matter and carbonates, and a cationic interchange from calcic to sodic (Ca2+ to Na+) was carried out. Organo-modification was performed using two types of cationic compounds, i.e., Oleylmethylbis (2-hydroxyethyl) ammonium chloride and Di (hydrogenated tallow alkyl) quaternary amine to organoclay with different surface hydrophobicity. The samples were characterized by X-ray diffractometry (XRD), infrared spectrometry (FT-IR), thermo-gravimetry (TGA), and scanning electron microscopy (SEM) to analyze the effect after the mentioned treatment and the resulting organoclays by the addition of these surfactants. The results confirm the significant intercalation of the organic treatment suitable for environmental remediation, compatibilizing recycled plastics, or improving performance in different hydrophobicity systems for industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.