Between June and September 2018, particulate matter (PM) samples were taken in the Sartenejas Valley, southeast of Greater Caracas, Venezuela. The aim was to evaluate the morphology and the elemental chemical composition of particulate matter and establish possible emission sources during the rainy season. Functional groups were identified by FTIR spectroscopic analysis, and morphology and elemental composition were obtained by SEM–EDX analysis. The sampling period coincided with a Sahara dust storm. The SEM–EDX and FTIR analyses found evidence of mineral elements related to soil and crustal origins. The presence of C-rich or C-containing aerosols is related to biological sources or mineral carbon. SEM–EDX analysis of PM revealed the following particle groups: geogenic, metallic, C-rich, and secondary aerosols. Quantitative source appointments through principal component analysis (PCA) corroborated PM sources, including soil dust, sea salts, and reacted aerosols. According to the authors’ knowledge, this study represents the first report to indicate that an episode of African dust could influence the particles collected in an intertropical continental sector in Venezuela, South America.
Between June 2018 and April 2019, a sampling campaign was carried out to collect PM2.5, monitoring meteorological parameters and anthropogenic events in the Sartenejas Valley, Venezuela. We develop a logistic model for PM2.5 exceedances (≥ 12.5 µg m−3). Source appointment was done using elemental composition and morphology of PM by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM–EDS). A proposal of an early warning system (EWS) for PM pollution episodes is presented. The logistic model has a holistic success rate of 94%, with forest fires and motor vehicle flows as significant variables. Source appointment analysis by occurrence of events showed that samples with higher concentrations of PM had carbon-rich particles and traces of K associated with biomass burning, as well as aluminosilicates and metallic elements associated with resuspension of soil dust by motor-vehicles. Quantitative source appointment analysis showed that soil dust, garbage burning/marine aerosols and wildfires are three majority sources of PM. An EWS for PM pollution episodes around the Sartenejas Valley is proposed considering the variables and elements mentioned.
The possibility of using lignin from the paper industry's black liquor to absorb nickel (Ni) and vanadium (V), was studied. The work comprised two stages: first, the identification of lignin's main functional groups and the surface characterization of the solid; second, an experimental study of lignin's behavior towards the Ni and V cations. Results revealed the presence of aromatic groups as well as substituted methoxy groups on the lignin's surface. This explains lignin's adsorptive capacity exhibited in the experimental evaluations. The removal of Ni and V ions was higher than expected solely through the physical adsorption mechanism. This higher capacity is associated with a proposed complex formation on the surface of the lignin. For Ni(II), lignin showed a higher adsorption compared to commercial adsorbents. In the case of V, the behavior is reversed, in order to elucidate this result, further research is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.