Abstract. Weld cladding is investigated using a nickel alloy clad on a high strength low alloy carbon steel substrate. The effects of pre-heat temperature, clad material and post-weld heattreatment are examined, along with the potential for thinner clad layers using laser cladding. Experimental residual stress measurements show good correlation with the simulation model. Metallurgical studies illustrate good fusion between clad and substrate materials. The potential for a fatigue-resistant cladding using a stainless steel clad is discussed with the possible use of postcladding operations to enhance the outcomes for the nickel alloy clad.
The nature and distribution of residual stresses are invariably critical for fatigue life with dissimilar material joints often inducing high tensile residual stresses. A fatigue-resistant concept of weld cladding process pipelines, producing compressive residual stresses, is under investigation to examine how these stresses may be influenced. Simplified weld cladding simulations have successfully illustrated the development and distribution of residual stresses through the joint. The study has highlighted the importance of accurate material data for clad and substrate materials with current analysis assumptions in a simple thick-walled pipe discussed. Experimental validation, using ICHD, measured residual stresses with depth on weld clad specimens, resulting in good correlation between simulation and experiment for a nickel-chromium-based superalloy clad on low alloy carbon steel as discussed. Future work, including a full 3D representation of the cladding process and a comparison of residual stress measurement methods, are also discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.