PURPOSE: To investigate the effects of topical application of an Aloe vera gel combined or not with microcurrent application on the healing of skin wounds surgically induced in Wistar rats. METHODS: The animals were randomly divided into the following groups: control group, animals topically treated with Aloe vera, animals treated with a microcurrent, and animals receiving topical application of Aloe vera combined with microcurrent application. RESULTS: The results indicated differences in wound healing between the various treatments when compared to the control group. Tissue hyperplasia was lower in the control group compared to the other treated groups. Accelerated wound healing was observed in the group treated with Aloe vera compared to control. Animals submitted to microcurrent application only and the group treated with microcurrent plus Aloe vera presented an earlier onset of the proliferative phase compared to the control group and animals treated with Aloe vera gel alone. Morphometric data confirmed the structural findings. CONCLUSION: Simultaneous application of Aloe vera gel and microcurrent is an excellent choice for the treatment of open wounds thus indicating a synergistic action of these two applications.
The limitations of bone reconstruction techniques have stimulated the tissue engineering for the repair of large bone defects using osteoconductive materials and osteoinductive agents. This study evaluated the effects of low intensity electric current on the inorganic bovine graft in calvaria defects. Bone defects were performed with piezoelectric system in the calvaria of Wistar rats divided into four groups (n = 24): (C) without grafting and without electrical stimulation; (E) with grafting; (MC) without grafting and submitted to electrical stimulation; (MC + E) with grafting and submitted to electrical stimulation. Inflammatory, angiogenic and osteogenic events during bone repair at the 10th, 30th, 60th, and 90th days were considered. Several inflammatory markers demonstrated the efficacy of grafting in reducing inflammation, particularly when subjected to electrical stimulation. Angiogenesis and collagen organization were more evident by electrical stimulation application on the grafts. Moreover, the osteogenic cell differentiation process indicated that the application of microcurrent on grafting modulated the homeostasis of bone remodeling. It is concluded that microcurrent favored the performance of grafts in calvarial rat model. Low-intensity electrical current might improve the osteoconductive property of grafting in bone defects. Therefore, electrical current becomes an option as complementary therapy in clinical trials involving bone surgeries and injuries.
This study investigated the effects of 670-nm indium gallium phosphide (InGaP) and 830-nm gallium aluminum arsenide (GaAlAs) laser therapy on second-degree burns induced on the back of Wistar rats. Sixty-three male Wistar rats were anesthetized, and second-degree burns were made on their back. The animals were then divided randomly into three groups: control (C), animals treated with 670-nm InGaP laser (LIn), and animals treated with 830-nm GaAlAs laser (LGa). The wound areas were removed after 2, 6, 10, 14, and 18 days of treatment and submitted to structural and morphometric analysis. The following parameters were studied: total number of granulocytes and fibroblasts, number of newly formed blood vessels, and percentage of birefringent collagen fibers in the repair area. Morphometric analysis showed that different lasers 670-nm InGaP and 830-nm GaAlAs reduced the number of granulocytes and an increase of newly formed vessels in radiated lesions. The 670-nm InGaP laser therapy was more effective in increasing the number of fibroblasts. The different treatments modified the expression of VEGF and TGF-β1, when compared with lesions not irradiated. The different types of light sources showed similar effects, improved the healing of second-degree burns and can help for treating this type of injury. Despite the large number of studies with LLTI application in second-degree burns, there is still divergence about the best irradiation parameters to be used. Further studies are needed for developing a protocol effective in treating this type of injury.
This study evaluated the wound healing activity of hydroalcoholic leaf extract of Oncidium flexuosum Sims. (Orchidaceae), an important native plant of Brazil, combined or not with microcurrent stimulation. Wistar rats were randomly divided into four groups of nine animals: control (C), topical application of the extract (OF), treated with a microcurrent (10 μA/2 min) (MC), and topical application of the extract plus microcurrent (OF + MC). Tissue samples were obtained 2, 6, and 10 days after injury and submitted to structural and morphometric analysis. The simultaneous application of OF + MC was found to be highly effective in terms of the parameters analyzed (P < .05), with positive effects on the area of newly formed tissue, number of fibroblasts, number of newly formed blood vessels, and epithelial thickness. Morphometric data confirmed the structural findings. The O. flexuosum leaf extract contains active compounds that speed the healing process, especially when applied simultaneously with microcurrent stimulation.
Objectives: This study evaluated the wound healing activity of microcurrent application alone or in combination with topical Hypericum perforatum L. and Arnica montana L. on skin surgical incision surgically induced on the back of Wistar rats. Design: The animals were randomly divided into six groups: (1) no intervention (control group); (2) microcurrent application (10?A/2 min); (3) topical application of gel containing H. perforatum; (4) topical application of H. perforatum gel and microcurrent (10?A/2 min); (5) topical application of gel containing A. montana; (6) topical application of A. montana gel and microcurrent (10?A/2 min). Tissue samples were obtained on the 2nd, 6th and 10th days after injury and submitted to structural and morphometric analysis. Results and conclusion: Differences in wound healing were observed between treatments when compared to the control group. Microcurrent application alone or combined with H. perforatum gel or A. montana gel exerted significant effects on wound healing in this experimental model in all of the study parameters (P < 0.05) when compared to the control group with positive effects seen regarding newly formed tissue, number of newly formed blood vessels and percentage of mature collagen fibers. The morphometric data confirmed the structural findings. In conclusion, application of H. perforatum or A. montana was effective on experimental wound healing when compared to control, but significant differences in the parameters studied were only observed when these treatments were combined with microcurrent application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.