Leptin directly activates macrophages and lymphocytes, but the role of leptin in neutrophil activation and migration is still controversial. Here, we investigate the in vivo mechanisms of neutrophil migration induced by leptin. The intraperitoneal injection of leptin (1 mg/kg) induces a time- and concentration-dependent neutrophil influx. We did not observe the enhancement of lipid bodies/droplets in neutrophils, after leptin treatment, as we had observed previously in peritoneal macrophages. The participation of leukotriene B4 (LTB4) in neutrophil recruitment triggered by leptin was investigated using different strategies. Leptin-induced neutrophil recruitment occurs both in the absence of 5-lipoxygenase activity in 5-lipoxygenase (5-LO)−/− mice and after the administration of either 5-LO inhibitor (Zileuton) or the LTB4 receptor antagonist (U-75302). Moreover, no direct induction of LTB4 by leptin could be observed. Neutrophil influx could not be prevented by the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, contrasting with the leptin-induced signaling for lipid body formation in macrophage that is mTOR-dependent. Leptin administration led to tumor necrosis factor-alpha (TNFα) production by the peritoneal cells both in vivo and in vitro. In addition, neutrophil recruitment was inhibited in tumor necrosis factor receptor 1 (TNFR1−/−) mice, indicating a role for TNF in leptin-induced neutrophil recruitment to the peritoneal cavity. Leptin-induced neutrophil influx was PI3Kγ-dependent, as it was absent in PI3Kγ−/− mice. Accordingly, leptin induced the peritoneal cells to produce CXCL1, both in vivo and in vitro, and the neutrophil influx was ablated after using an antibody against CXCL1. Our results establish TNFα/TNFR1- and CXCL1-dependent signaling as important pathways for leptin-induced neutrophil migration in vivo.
Leptin is a cytokine, produced mainly by mature adipocytes, that regulates the central nervous system, mainly to suppress appetite and stimulate energy expenditure. Leptin also regulates the immune response by controlling activation of immunomodulatory cells, including eosinophils. While emerging as immune regulatory cells with roles in adipose tissue homeostasis, eosinophils have a well-established ability to synthesize pro-inflammatory molecules such as lipid mediators, a key event in several inflammatory pathologies. Here, we investigated the impact and mechanisms involved in leptin-driven activation of eicosanoid-synthesizing machinery within eosinophils. Direct in vitro activation of human or mouse eosinophils with leptin elicited synthesis of lipoxygenase as well as cyclooxygenase products. Displaying selectivity, leptin triggered synthesis of LTC4 and PGD2, but not PGE2, in parallel to dose-dependent induction of lipid body/lipid droplets biogenesis. While dependent on PI3K activation, leptin-driven eosinophil activation was also sensitive to pertussis toxin, indicating the involvement of G-protein coupled receptors on leptin effects. Leptin-induced lipid body-driven LTC4 synthesis appeared to be mediated through autocrine activation of G-coupled CCR3 receptors by eosinophil-derived CCL5, inasmuch as leptin was able to trigger rapid CCL5 secretion, and neutralizing anti-RANTES or anti-CCR3 antibodies blocked lipid body assembly and LTC4 synthesis induced by leptin. Remarkably, autocrine activation of PGD2 G-coupled receptors DP1 and DP2 also contributes to leptin-elicited lipid body-driven LTC4 synthesis by eosinophils in a PGD2-dependent fashion. Blockade of leptin-induced PGD2 autocrine/paracrine activity by a specific synthesis inhibitor or DP1 and DP2 receptor antagonists, inhibited both lipid body biogenesis and LTC4 synthesis induced by leptin stimulation within eosinophils. In addition, CCL5-driven CCR3 activation appears to precede PGD2 receptor activation within eosinophils, since neutralizing anti-CCL5 or anti-CCR3 antibodies inhibited leptin-induced PGD2 secretion, while it failed to alter PGD2-induced LTC4 synthesis. Altogether, sequential activation of CCR3 and then PGD2 receptors by autocrine ligands in response to leptin stimulation of eosinophils culminates with eosinophil activation, characterized here by assembly of lipidic cytoplasmic platforms synthesis and secretion of the pleiotropic lipid mediators, PGD2, and LTC4.
Eosinophils are key regulators of adipose tissue homeostasis, thus characterization of adipose tissue-related molecular factors capable of regulating eosinophil activity is of great interest. Leptin is known to directly activate eosinophils in vitro, but leptin ability of inducing in vivo eosinophilic inflammatory response remains elusive. Here, we show that leptin elicits eosinophil influx as well as its activation, characterized by increased lipid body biogenesis and LTC 4 synthesis. Such leptin-triggered eosinophilic inflammatory response was shown to be dependent on activation of the mTOR signaling pathway, since it was (i) inhibited by rapamycin pre-treatment and (ii) reduced in PI3K-deficient mice. Local infiltration of activated eosinophils within leptin-driven inflammatory site was preceded by increased levels of classical mast cell-derived molecules, including TNFa, CCL5 (RANTES), and PGD 2. Thus, mice were pre-treated with a mast cell degranulating agent compound 48/80 which was capable to impair leptin-induced PGD 2 release, as well as eosinophil recruitment and activation. In agreement with an indirect mast celldriven phenomenon, eosinophil accumulation induced by leptin was abolished in TNFR-1 deficient and also in HQL-79-pretreated mice, but not in mice pretreated with neutralizing antibodies against CCL5, indicating that both typical mast cell-driven signals TNFa and PGD 2 , but not CCL5, contribute to leptin-induced eosinophil influx. Distinctly, leptininduced eosinophil lipid body (lipid droplet) assembly and LTC 4 synthesis appears to depend on both PGD 2 and CCL5, since both HQL-79 and anti-CCL5 treatments were able to inhibit these eosinophil activation markers. Altogether, our data show that leptin triggers eosinophilic inflammation in vivo via an indirect mechanism dependent on activation of resident mast cell secretory activity and mediation by TNFa, CCL5, and specially PGD 2 .
Leptin is a pleiotropic adipokine that regulates immunometabolism centrally and peripherally.Obese individuals present increased levels of leptin in the blood and develop hypothalamic resistance to this adipokine. Here we investigated whether leptin effects on the periphery are maintained despite the hypothalamic resistance. We previously reported that leptin injection induces in vivo neutrophil migration and peritoneal macrophage activation in lean mice through TNF-and CXCL1-dependent mechanisms. However, leptin effects on leukocyte biology during obesity remain unclear. In this study, we investigated the in vivo responsiveness of leukocytes to i.p. injected leptin in mice with diet-induced obesity (DIO). After 14-16 wk, high-sucrose, high-fat diet (HFD)-fed mice showed hyperglycemia, hyperleptinemia, and dyslipidemia compared to normalsucrose, normal-fat diet (ND). Exogenous leptin did not reduce food intake in DIO mice in contrast to control mice, indicating that DIO mice were centrally resistant to leptin. Regardless of the diet, we found increased levels of TNF-and CXCL1 in the animals injected with leptin, alongside a pronounced neutrophil migration to the peritoneal cavity and enhanced biogenesis of lipid droplets in peritoneal macrophages. Supporting our in vivo results, data from ex vivo leptin stimulation experiments confirmed hypothalamic resistance in DIO mice, whereas bone marrow cells responded to leptin stimulation through mTOR signaling despite obesity. Altogether, our results show that leukocytes responded equally to leptin in ND-or HFD-fed mice. These results support a role for leptin in the innate immune response also in obesity, contributing to the inflammatory status that leads to the development of metabolic disease. K E Y W O R D Sadipose tissue, high-fat diet, leptin signaling, leukocytes, macrophages, neutrophils INTRODUCTIONObesity has become a major health problem worldwide. It is associated with various comorbidities including cancer, type 2 diabetes, Abbreviations: DIO, diet-induced obesity or diet-induced obese; EP, epididymal; HFD, high-sucrose, high-fat diet; ND, normal-sucrose, normal-fat diet; RP, retroperitoneal; SC, subcutaneous; TAG, triacylglycerol; WAT, white adipose tissue.cardiovascular diseases, among many others. 1 Several factors, that is, genetics, epigenetics, environment, habits, and diets influence the development of obesity. Regardless of the etiology, one common aspect of obesity is the central resistance to leptin signaling. 2,3 Leptin is an adipokine that functions as a sensor of the energetic status of the organism. It acts centrally on hypothalamic neurons to induce lipolysis, energy expenditure, satiety, and inhibit food intake. 4,5 There is also evidence that leptin can regulate peripheral immune function through
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.