The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.
The porous CaP subcoating was formed on the Ti6Al4V titanium alloy substrate by plasma electrolytic oxidation (PEO). Then, upper coatings were formed by radio frequency magnetron sputtering (RFMS) over the PEO subcoating by the sputtering of various CaP powder targets: β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), Mg-substituted β-tricalcium phosphate (Mg-β-TCP) and Mg-substituted hydroxyapatite (Mg-HA), Sr-substituted β-tricalcium phosphate (Sr-β-TCP) and Sr-substituted hydroxyapatite (Sr-HA). The coating surface morphology was studied by scanning electron and atomic force microscopy. The chemical composition was determined by X-ray photoelectron spectroscopy. The phase composition of the coatings was studied by X-ray diffraction analysis. The Young’s modulus of the coatings was studied by nanoindentation test. RF-magnetron sputtering treatment of PEO subcoating resulted in multileveled roughness, increased Ca/P ratio and Young’s modulus and enrichment with Sr and Mg. Sputtering of the upper layer also helped to adjust the coating crystallinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.