This article describes FLAVERS, a finite-state verification approach that analyzes whether concurrent systems satisfy user-defined, behavioral properties. FLAVERS automatically creates a compact, event-based model of the system that supports efficient dataflow analysis. FLAVERS achieves this efficiency at the cost of precision. Analysts, however, can improve the precision of analysis results by selectively and judiciously incorporating additional semantic information into an analysis.We report on an empirical study of the performance of the FLAVERS/Ada toolset applied to a collection of multitasking Ada systems. This study indicates that sufficient precision for proving system properties can usually be achieved and that the cost for such analysis typically grows as a low-order polynomial in the size of the system.
Abstract. Information about which statements in a concurrent program may happen in parallel (MHP) has a number of important applications. It can be used in program optimization, debugging, program understanding tools, improving the accuracy of data flow approaches, and detecting synchronization anomalies, such as data races. In this paper we propose a data flow algorithm for computing a conservative estimate of the MHP information for Java programs that has a worstcase time bound that is cubic in the size of the program. We present a preliminary experimental comparison between our algorithm and a reachability analysis algorithm that determines the "ideal" static MHP information for concurrent Java programs. This initial experiment indicates that our data flow algorithm precisely computed the ideal MHP information in the vast majority of cases we examined. In the two out of 29 cases where the MHP algorithm turned out to be less than ideally precise, the number of spurious pairs was small compared to the total number of ideal MHP pairs.
Information about which pairs of statements in a concurrent program can execute in parallel is important for optimizing and debugging programs, for detecting anomalies, and for improving the accuracy of data flow analysis. In this paper, we describe a new data flow algorithm that finds a conservative approximation of the set of all such pairs. We have carried out an initial comparison of the precision of our algorithm and that of the most precise of the earlier approaches, Masticola and Ryder's non-concurrency analysis [8], using a sample of 159 concurrent Ada programs that includes the collection assembled by Masticola and Ryder. For these examples, our algorithm was almost always more precise than non-concurrency analysis, in the sense that the set of pairs identified by our algorithm as possibly happening in parallel is a proper subset of the set identified by non-concurrency analysis. In 132 cases, we were able to use reachability analysis to determine exactly the set of pairs of statements that may happen in parallel. For these cases, there were a total of only 10 pairs identified by our algorithm that cannot actually happen in parallel.
Protection of digital data from unauthorized access is of paramount importance. In the past several years, much research has concentrated on protecting data from the standpoint of confidentiality, integrity and availability. Software is a form of data with unique properties and its protection poses unique challenges. First, software can be reverse engineered, which may result in stolen intellectual property. Second, software can be altered with the intent of performing operations this software must not be allowed to perform.With commercial software increasingly distributed in forms from which source code can be easily extracted, such as Java bytecodes, reverse engineering has become easier than ever. Obfuscation techniques have been proposed to impede illegal reverse engineers. Obfuscations are program transformations that preserve the program functionality while obscuring the code, thereby protecting the program against reverse engineering. Unfortunately, the existing obfuscation techniques are limited to obscuring variable names, transformations of local control flow, and obscuring expressions using variables of primitive types. In this paper, we propose obfuscations of design of object-oriented programs.We describe three techniques for obfuscation of program design. The class coalescing obfuscation replaces several classes with a single class. The class splitting obfuscation replaces a single class with multiple classes, each responsible for a part of the functionality of the original class. The type hiding obfuscation uses the mechanism of interfaces in Java to obscure the types of objects manipulated by the program. We show the results of our initial experiments with a prototype implementation of these techniques. * In particular, we show that the runtime overheads of these obfuscations tend to be small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.