Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing 1, 2. Focal adhesions are multifunctional organelles that mediate cell-ECM adhesion, force transmission, cytoskeletal regulation and signalling1 -3. Focal adhesions consist of a complex network 4 of trans-plasma-membrane integrins and cytoplasmic proteins that form a <200-nm plaque5 , 6 linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine7 ,8 . However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy) 9 to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a ~40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino-and carboxy-terminally tagged talins, we reveal talin's polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.Modern understanding of cellular function is founded on the revolution in the 1950s to 1970s in visualizing cellular ultrastructure by electron microscopy 10,11 . Together with the
Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.fluorescence microscopy ͉ interferometry ͉ PALM ͉ photoactivated localization microscopy ͉ single molecule imaging A fundamental question in biomedical research is how specific, nanometer-scale biomolecules are organized into multicomponent micron-scale structural and signaling ensembles that facilitate cell function. For example, microtubules are built of 8-nm tubulin subunits that incorporate on the ultrastructural level into polymers 25 nm in diameter and Ͼ10 m in length that serve as the building blocks of superstructures such as mitotic spindles and flagella. However, key challenges remain for determining cellular ultrastructure with high molecular specificity. Because cellular structures are organized on the nanoscale, nanometer resolution is required. Immunoelectron microscopy (EM)-based approaches provide the necessary resolution, but they lack robust molecular specificity because the large size of the antibodies hampers their penetration into dense structures and the specificity of the antibody can be compromised by cross-reactivity and epitope masking caused by the harsh fixation often used for high-resolution EM. Fluorescence microscopy coupled with fluorescent protein (FP) fusion technology enables imaging cellular structure with exquisite molecular specificity, but the resolution of 3D images is diffraction-limited to Ϸ200 nm in the lateral and Ϸ500 nm in the axial direction, limiting conventional fluorescence to the characterization of cellular superstructure. Some of the recent fluorescence-based superresolution microscopy techniques (1-5) demonstrated a resolution of Ͻ100 nm in the vertical direction; however, this is still insufficient to bridge the resolution gap between cellular ultrastructure and superstructure. To achieve near-ultrastructural 3D resolution even for the limited photon outputs of highmolecular-specificity FPs, we have developed a single-photon multiphase interferometric scheme and integrated it with a lateral photoactivated localization microscopy (PALM) (6
Focal adhesions (FAs) link the extracellular matrix (ECM) to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signaling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FA is unknown. Using interferometric photo-activation localization (iPALM) super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FA. Inactive vinculin localizes to the lower integrin signaling layer in FA by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FA where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FA at the nano-scale to regulate vinculin activation and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.