Согласно теореме Якоби-Шаля для любой геодезической на $n$-осном эллипсоиде в евклидовом $n$-мерном пространстве найдутся помимо этого эллипсоида еще $n-2$ софокусных с ним квадрик, которых одновременно касаются все касательные прямые, проведенные к этой геодезической. В работе показано, что если рассмотреть геодезический поток на пересечении нескольких невырожденных софокусных квадрик, результат останется верным. Как и в случае теоремы Якоби-Шаля, этот факт обеспечивает интегрируемость соответствующего геодезического потока. Для каждого компактного пересечения нескольких невырожденных софокусных квадрик был определен его класс гомеоморфности. Как оказалось, любое такое пересечение гомеоморфно прямому произведению нескольких сфер. Также в работе описано достаточное условие на потенциал, добавление которого сохранит интегрируемость соответствующей динамической системы на пересечении произвольного числа софокусных квадрик.
Библиография: 16 названий.
Рассматриваются биллиарды на связных компактных столах в $\mathbb{R}^3$, ограниченных конечным числом софокусных квадрик и имеющих двугранные углы, равные ${\pi}/{2}$. Биллиарды в таких областях являются интегрируемыми, имея три первых интеграла, инволютивных внутри области. Введено два отношения эквивалентности: комбинаторная эквивалентность столов-областей, определяемая устройством их границы, и слабая эквивалентность соответствующих биллиардных систем на них. Выполнена классификация биллиардных столов в $\mathbb{R}^3$ относительно комбинаторной эквивалентности, получено 35 классов попарно неэквивалентных столов. Для каждого из полученных классов столов определен класс гомеоморфности неособого изоэнергетического 5-многообразия: либо $S^5$, либо $S^1\times S^4$, либо $S^2\times S^3$. Получено 24 класса попарно неэквивалентных (относительно слабой эквивалентности) слоений Лиувилля биллиардов на указанных столах в ограничении на неособый уровень энергии. Также определены атомы-бифуркации трехмерных торов, соответствующие дугам бифуркационной диаграммы.
Библиография: 59 названий.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.