Introduction Pharmacists are poised to be the health care professionals best suited to provide medication‐related consults and services based on a patient's genetics. Despite its potential benefits, the implementation of pharmacogenetic (PGx) testing into primary clinical settings has been slow among medically underserved populations. To our knowledge, this is the first time that PGx‐driven recommendations have been incorporated into a Comprehensive Medication Management (CMM) service in a Hispanic population. Objectives The aim of this study is to evaluate the clinical utility of adding PGx guidance into pharmacist‐driven CMM. Methods This is a pre‐ and post‐interventional design study. Patients were recruited from a psychologist's clinic. A total of 24 patients had a face‐to‐face interview with a pharmacist to complete a CMM, Personal Medication Record, and Medication‐Related Action Plan (MAP) blind to PGx findings. Collected buccal DNA samples were genotyped using drug‐metabolizing enzymes and transporters (DMET) Plus Array. Results The pharmacist generated new MAPs for each patient based on PGx results. Genetic variants that could potentially affect the safety and effectiveness of at least one drug in the pharmacotherapy were identified in 96% of patients, for whom the pharmacist changed the initial recommendations. Polymorphisms in genes encoding for isoenzymes CYP2D6, CYP2C19, and CYP2C9 were identified in 83%, 52%, and 41% of patients, respectively. Pharmacists performing CMM identified 22 additional medication problems after PGx determinations. Moreover, they agreed with the clinical utility of PGx in the studied sample based on perceived value of adding PGx to traditional CMM and its utility in the decision‐making process of pharmacists. Conclusions The study confirmed the critical role to be played by pharmacists in facilitating the clinical usage of relevant genetic information to optimize drug therapy decisions as well as their involvement on many levels of these multidisciplinary implementation efforts, including championing and leading PGx‐guided CMM services.
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by an overexpression of epidermal growth factor receptor (EGFR). Nimotuzumab is a recombinant humanized monoclonal antibody against human EGFR. The aim of this study was to develop a population pharmacokinetic model for nimotuzumab and to identify demographic and clinical predictive factors of the pharmacokinetic variability. The population pharmacokinetics (PopPK) of nimotuzumab was characterized using a nonlinear mixed-effect modeling approach with NONMEM®. A total of 422 log-transformed concentration-versus-time datapoints from 20 patients enrolled in a single-center phase I clinical trial were used. Quasi steady state approximation of the full TMDD (target-mediated drug disposition) model with constant target concentration best described the concentration-time profiles. A turnover mediator was included which stimulates the non-specific clearance of mAb in the central compartment in order to explain the reduced levels at higher doses. Covariates had no influence on the PK (pharmacokinetics) parameters. The model was able to detect that the maximum effective dose in ADPKD subjects is 100 mg. The developed PopPK model may be used to guide the dose selection for nimotuzumab during routine clinical practice in patients with polycystic kidney disease. The model will further support the ongoing investigations of the PK/PD relationships of nimotuzumab to improve its therapeutic use in other disease areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.