BackgroundThe complex network of direct and indirect relationships determines not only the species abundances but also the community characteristics such as diversity and stability. In this context, seed predation is a direct interaction that affects the reproductive success of the plant. For Acrocomia aculeata, the seed predation by Pachymerus cardo and Speciomerus revoili in post-dispersal may destroy more than 70% of the propagules and is influenced by the herbivory of the fruits during pre-dispersal. Fruits of plants with a higher level of herbivory during pre-dispersal are less attacked by predators in post-dispersal. We proposed a hypothesis that describes this interaction as an indirect defense mediated by fungi in a multitrophic interaction. As explanations, we proposed the predictions: i) injuries caused by herbivores in the fruits of A. aculeata favor fungal colonization and ii) the colonization of A. acuelata fruit by decomposing fungi reduces the selection of the egg-laying site by predator.Methodology/Principal FindingsFor prediction (i), differences in the fungal colonization in fruits with an intact or damaged epicarp were evaluated in fruits exposed in the field. For prediction (ii), we performed fruit observations in the field to determine the number of eggs of P. cardo and/or S. revoili per fruit and the amount of fungal colonization in the fruits. In another experiment, in the laboratory, we use P. cardo females in a triple-choice protocol. Each insect to choose one of the three options: healthy fruits, fruits with fungus, or an empty pot. The proposed hypothesis was corroborated. Fruits with injuries in the epicarp had a higher fungal colonization, and fruits colonized by fungi were less attractive for egg-laying by seed predators.Conclusion/SignificanceThis study emphasizes the importance of exploring the networks of interactions between multitrophic systems to understand the dynamics and maintenance of natural populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.