Zika virus (ZIKV) is a teratogenic mosquito-borne flavivirus that can be sexually transmitted from man to woman. The finding of high viral loads and prolonged viral shedding in semen suggests that ZIKV replicates within the human male genital tract, but its target organs are unknown. Using ex vivo infection of organotypic cultures, we demonstrated here that ZIKV replicates in human testicular tissue and infects a broad range of cell types, including germ cells, which we also identified as infected in semen from ZIKV-infected donors. ZIKV had no major deleterious effect on the morphology and hormonal production of the human testis explants. Infection induced a broad antiviral response but no IFN upregulation and minimal proinflammatory response in testis explants, with no cytopathic effect. Finally, we studied ZIKV infection in mouse testis and compared it to human infection. This study provides key insights into how ZIKV may persist in semen and alter semen parameters, as well as a valuable tool for testing antiviral agents.
Testis structure and function in dogs are relatively poorly investigated. The aim of the present study was to carry out a comparative investigation of the stages of the seminiferous epithelium cycle and its duration in different breeds of dog. Fifty-six sexually mature dogs (mongrel, n = 12; pinscher, n = 12; beagle, n = 5; American pit bull, n = 9; poodle, n = 12; and Labrador retriever, n = 6) were analysed. Intratesticular injections of tritiated thymidine were given to determine the duration of spermatogenesis. Orchiectomy was performed at different time periods following injection (1 h, 2 and 4 weeks). Testis fragments were embedded in plastic and routinely prepared for histological and autoradiographic evaluations. Eight stages were characterized based on the acrosome system. Significant (P < 0.05) differences were found for the frequencies of the different stages characterized (except Stages V, VI and VIII), particularly for the mongrel. Stage IV (when spermiation occurs) was the most frequent in all six breeds (~25%), whereas Stages II and VIII were the least frequent (< 8%). Each spermatogenic cycle and the total duration of spermatogenesis lasted 13.73 ± 0.03 and 61.9 ± 0.14 days, respectively, for the mongrel, poodle, pinscher, beagle, and Labrador retriever. These values were ~10% lower (P < 0.03) for the American pit bull (12.55 ± 0.26 and 56.5 ± 1.17 days, respectively). To our knowledge, this is the first comprehensive study to perform a careful investigation of stage frequencies and seminiferous epithelium cycle duration in this very important domestic species.
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and are located in a highly dynamic microenvironment called “niche” that influences all aspects of stem cell function, including homing, self-renewal and differentiation. Several studies have recently identified specific proteins that regulate the fate of SSCs. These studies also aimed at identifying surface markers that would facilitate the isolation of these cells in different vertebrate species. The present study is the first to investigate SSC physiology and niche in stallions and to offer a comparative evaluation of undifferentiated type A spermatogonia (Aund) markers (GFRA1, PLZF and CSF1R) in three different domestic equid species (stallions, donkeys, and mules). Aund were first characterized according to their morphology and expression of the GFRA1 receptor. Our findings strongly suggest that in stallions these cells were preferentially located in the areas facing the interstitium, particularly those nearby blood vessels. This distribution is similar to what has been observed in other vertebrate species. In addition, all three Aund markers were expressed in the equid species evaluated in this study. These markers have been well characterized in other mammalian species, which suggests that the molecular mechanisms that maintain the niche and Aund/SSCs physiology are conserved among mammals. We hope that our findings will help future studies needing isolation and cryopreservation of equids SSCs. In addition, our data will be very useful for studies that aim at preserving the germplasm of valuable animals, and involve germ cell transplantation or xenografts of equids testis fragments/germ cells suspensions.
Xenografting of immature mammalian testis tissue into mice can accelerate sperm production. To determine whether this shortened time to sperm production is because of reduced length of the spermatogenic cycle, we applied bromodeoxyuridine (BrdU) incorporation to analyze the spermatogenic cycle in porcine and ovine testis xenografts. Small testis fragments from newborn pigs and sheep were ectopically grafted into mice. Once complete spermatogenesis was present in grafted tissue, mice were injected with BrdU and grafts were recovered at different time points thereafter. In porcine grafts, the most advanced germ cells labeled 1 hour, 9 days, 12.3 days, and 18 days after BrdU injection were stage 1 preleptotene/leptotene primary spermatocytes, stage 1 pachytene primary spermatocytes, stage 5 newly-formed round spermatids, and late stage 2 elongating spermatids, respectively. In ovine grafts, the most advanced labeled germ cells at 1 hour, 11 days, and 22 days post-BrdU injection were stage 2 preleptotene/ leptotene primary spermatocytes, late stage 1 pachytene primary spermatocytes, and stage 2 elongating spermatids, respectively. These results indicate that each spermatogenic cycle in porcine and ovine xenografts lasts approximately 9 and 11 days, respectively, which is similar to their durations in situ. Therefore, the length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. This is consistent with earlier reports showing that the cycle length is inherent to the germ cell genotype. The shortened time to sperm production in xenografts therefore appears attributable to accelerated maturation of the testicular somatic compartments. Our results suggest that testis xenografts provide a useful model to study the timing of testicular maturation and spermatogenesis in different mammalian species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.