Cancer chemotherapy is associated with neutropenia and impaired neutrophil function. This study aimed to investigate whether supplementation with low dose fish oil (FO), providing n-3 polyunsaturated fatty acids, in cancer patients receiving chemotherapy after surgical tumor (mainly gastrointestinal) removal is able to improve the function of blood neutrophils. Patients (n = 38) receiving chemotherapy (5-fluorouracil and leucovorin) were randomized into two groups; one group (control) did not receive a supplement, while the other group (FO) received 2 g FO/day for 8 weeks; the FO provided 0.3 g eicosapentaenoic acid plus 0.4 g docosahexaenoic acid per day. Patients in the control group lost an average of 2.5 kg of weight over the 8 weeks of the study. The number of blood polymorphonuclear cells (PMNC), mainly neutrophils, and their functions (phagocytosis and hydrogen peroxide production) decreased in the control group (average decreases of approximately 30, 45 and 17%, respectively). FO prevented these decreases and actually increased body weight (average of 1.7 kg weight gain; p < 0.002 vs. control group), PMNC number (average 29% increase), phagocytosis (average 14% increase) and superoxide production (average 28% increase). FO may be useful in preventing chemotherapy-induced decline in neutrophil number and function.
BackgroundObesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats.MethodsMonosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed.ResultsObese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob.ConclusionsLow dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.
Objective: This study investigated the effect of interval training on blood biochemistry and immune parameters in type 1 diabetic rats. Materials and methods: Male Wistar rats were divided into four groups: sedentary (SE, n = 15), interval training (IT, n = 17), diabetic sedentary (DSE, n = 17), diabetic interval training (DIT, n = 17). Diabetes was induced by i.v. injection of streptozotocin (60 mg/kg). Swimming Interval Training consisted of 30-s exercise with 30-s rest, for 30 minutes, during 6 weeks, four times a week, with an overload of 15% of body mass. Plasma glucose, lactate, triacylglycerol and total cholesterol concentrations, phagocytic capacity, cationic vesicle content, and superoxide anion and hydrogen peroxide production by blood neutrophils and peritoneal macrophages were evaluated. Proliferation of mesenteric lymphocytes was also estimated. Results: Interval training resulted in attenuation of the resting hyperglycemic state and decreased blood lipids in the DIT group. Diabetes increased the functionality of blood neutrophils and peritoneal macrophages in the DSE group. Interval training increased all functionality parameters of peritoneal macrophages in the IT group. Interval training also led to a twofold increase in the proliferation of mesenteric lymphocytes after 6 weeks of exercise in the DIT group. Conclusion: Low-volume high-intensity physical exercise attenuates hyperglycemia and dislipidemia induced by type 1 diabetes, and induces changes in the functionality of innate and acquired immunity. Arq Bras Endocrinol Metab. 2013;57(8):594-602 Keywords Interval training; diabetes mellitus; immune system; hyperglycemia RESUMO Objetivo: Este estudo investigou os efeitos do treinamento intervalado sobre parâmetros bioquí-micos e imunológicos em ratos diabéticos do tipo 1. Materiais e métodos: Ratos Wistar machos foram divididos em quatro grupos: sedentário (SE, n = 15), treinamento intervalado (TI, n = 17), sedentário diabético (SED, n = 17) e treinamento intervalado diabético (TID, n = 17). O diabetes foi induzido por uma injeção intravenosa de estreptozotocina (60 mg/kg). O treinamento intervalado de natação consistiu de 30s de exercício com 30s de recuperação, 30 minutos, durante 6 semanas, 4 vezes por semana, com sobrecarga de 15% da massa corporal. Foram avaliados glicemia, lactato sanguíneo, concentração de triacilglicerol e colesterol total, capacidade fagocítica, conteúdo de vesí-culas catiô nicas, produção de ânion superóxido e peróxido de hidrogênio por neutrófilos sanguíneos e macrófagos peritoneais. A proliferação de linfócitos mesentéricos também foi avaliada. Resultados: O treinamento intervalado resultou em atenuação do estado hiperglicêmico e diminuiu os lipídeos sanguíneos no grupo TID. O diabetes aumentou a funcionalidade dos neutrófilos sanguíneos e macrófagos peritoneais do grupo SED. O treinamento intervalado aumentou todos os parâmetros funcionais dos macrófagos peritoneais do grupo TI. O treinamento intervalado também aumentou duas vezes a proliferação dos linfóci...
Fish oil (FO) has been shown to affect cancer cachexia, tumor mass, and immunity cell. n-3 PUFA, specifically α-linolenic fatty acid (ALA), has controversial effects. We investigated this in nontumor-bearing Wistar rats fed regular chow (C), fed regular chow and supplemented with FO or Oro Inca oil (OI), and Walker 256 tumor-bearing rats fed regular chow (W), fed regular chow and supplemented with FO (WFO) or OI (WOI). Rats were supplemented (1g/kg body weight/day) during 4 wk and then the groups tumor-bearing were inoculated with Walker 256 tumor cells suspension and 14 days later the animals were killed. WFO increased EPA fivefold and DHA 1.5-fold in the tumor tissue compared to W (P < 0.05). OI supplementation increased of threefold of ALA when compared to W (P < 0.05). Tumor mass in WFO and OI was of 2.3-fold lower, as well as tumor cell proliferation of 3.0-fold tumor tissue lipoperoxidation increased of 76.6% and cox-2 expression was 20% lower. Cachexia parameters were attenuate, blood glucose (25% higher), Triacylglycerolemia (50% lower), and plasma TNF-α (65% lower; P < 0.05) and IL-6 (62.5% lower). OI, rich in ALA, caused the same effect on cancer as those seen in FO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.