BackgroundGut microbiome dysbiosis has been demonstrated in subjects with newly diagnosed and chronic inflammatory bowel disease (IBD). In this study we sought to explore longitudinal changes in dysbiosis and ascertain associations between dysbiosis and markers of disease activity and treatment outcome.MethodsWe performed a prospective cohort study of 19 treatment-naïve pediatric IBD subjects and 10 healthy controls, measuring fecal calprotectin and assessing the gut microbiome via repeated stool samples. Associations between clinical characteristics and the microbiome were tested using generalized estimating equations. Random forest classification was used to predict ultimate treatment response (presence of mucosal healing at follow-up colonoscopy) or non-response using patients’ pretreatment samples.ResultsPatients with Crohn’s disease had increased markers of inflammation and dysbiosis compared to controls. Patients with ulcerative colitis had even higher inflammation and dysbiosis compared to those with Crohn’s disease. For all cases, the gut microbial dysbiosis index associated significantly with clinical and biological measures of disease severity, but did not associate with treatment response. We found differences in specific gut microbiome genera between cases/controls and responders/non-responders including Akkermansia, Coprococcus, Fusobacterium, Veillonella, Faecalibacterium, and Adlercreutzia. Using pretreatment microbiome data in a weighted random forest classifier, we were able to obtain 76.5 % accuracy for prediction of responder status.ConclusionsPatient dysbiosis improved over time but persisted even among those who responded to treatment and achieved mucosal healing. Although dysbiosis index was not significantly different between responders and non-responders, we found specific genus-level differences. We found that pretreatment microbiome signatures are a promising avenue for prediction of remission and response to treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0331-y) contains supplementary material, which is available to authorized users.
Human immunodeficiency virus type 1 (HIV-1) transmission from infected patients to health-care workers has been well documented, but transmission from an infected health-care worker to a patient has not been reported. After identification of an acquired immunodeficiency syndrome (AIDS) patient who had no known risk factors for HIV infection but who had undergone an invasive procedure performed by a dentist with AIDS, six other patients of this dentist were found to be HIV-infected. Molecular biologic studies were conducted to complement the epidemiologic investigation. Portions of the HIV proviral envelope gene from each of the seven patients, the dentist, and 35 HIV-infected persons from the local geographic area were amplified by polymerase chain reaction and sequenced. Three separate comparative genetic analyses--genetic distance measurements, phylogenetic tree analysis, and amino acid signature pattern analysis--showed that the viruses from the dentist and five dental patients were closely related. These data, together with the epidemiologic investigation, indicated that these patients became infected with HIV while receiving care from a dentist with AIDS.
Motivation Methods for analyzing microbiome data generally fall into one of two groups: tests of the global hypothesis of any microbiome effect, which do not provide any information on the contribution of individual operational taxonomic units (OTUs); and tests for individual OTUs, which do not typically provide a global test of microbiome effect. Without a unified approach, the findings of a global test may be hard to resolve with the findings at the individual OTU level. Further, many tests of individual OTU effects do not preserve the false discovery rate (FDR). Results We introduce the linear decomposition model (LDM), that provides a single analysis path that includes global tests of any effect of the microbiome, tests of the effects of individual OTUs while accounting for multiple testing by controlling the FDR, and a connection to distance-based ordination. The LDM accommodates both continuous and discrete variables (e.g. clinical outcomes, environmental factors) as well as interaction terms to be tested either singly or in combination, allows for adjustment of confounding covariates, and uses permutation-based P-values that can control for sample correlation. The LDM can also be applied to transformed data, and an ‘omnibus’ test can easily combine results from analyses conducted on different transformation scales. We also provide a new implementation of PERMANOVA based on our approach. For global testing, our simulations indicate the LDM provided correct type I error and can have comparable power to existing distance-based methods. For testing individual OTUs, our simulations indicate the LDM controlled the FDR well. In contrast, DESeq2 often had inflated FDR; MetagenomeSeq generally had the lowest sensitivity. The flexibility of the LDM for a variety of microbiome studies is illustrated by the analysis of data from two microbiome studies. We also show that our implementation of PERMANOVA can outperform existing implementations. Availability and implementation The R package LDM is available on GitHub at https://github.com/yijuanhu/LDM in formats appropriate for Macintosh or Windows. Supplementary information Supplementary data are available at Bioinformatics online.
The Kaplan-Meier (product-limit) estimator of the survival function of randomly-censored time-to-event data is a central quantity in survival analysis. It is usually introduced as a nonparametric maximum likelihood estimator, or else as the output of an imputation scheme for censored observations such as redistribute-to-the-right or self-consistency. Following recent work by Robins and Rotnitzky, we show that the Kaplan-Meier estimator can also be represented as a weighted average of identically distributed terms, where the weights are related to the survival function of censoring times. We give two demonstrations of this representation; the first assumes a Kaplan-Meier form for the censoring time survival function, the second estimates the survival functions of failure and censoring times simultaneously and can be developed without prior introduction to the Kaplan-Meier estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.