The physical and biotic environment is often considered the primary driver of functional variation in plant communities. Here, we examine the hypothesis that spatial isolation may also be an important driver of functional variation in plant communities where disturbance and dispersal limitation may prevent species from occupying all suitable habitats. To test this hypothesis, we surveyed the vascular plant composition of 30 islands in the Gulf of Maine, USA, and used available functional trait and growth form data to quantify the functional composition of these islands. We categorized species based on dispersal mode and used a landscape metric of isolation to assess the potential role of dispersal limitation as a mechanism of isolation‐driven assembly. We tested for island and species level effects on functional composition using a hierarchical Bayesian framework to better assess the causal link between isolation and functional variation. Growth form composition and the community mean value of functional traits related to growth rate, stress tolerance, and nutrient use varied significantly with island isolation. Functional traits and growth forms were significantly associated with dispersal mode, and spatial isolation was the strongest driver of primary trait variation, while island properties associated with environmental drivers in our system were not strong predictors of trait variation. Despite the species‐level association of dispersal mode and functional traits, dispersal mode only accounted for a small proportion of the overall isolation effect on community‐level trait variation. Our study suggests that spatial isolation can be a key driver of functional assembly in plant communities on islands, though the role of particular dispersal processes remains unclear.
No abstract
Metal-contaminated soils provide numerous stressors to plant life, resulting in unique plant communities worldwide. The current study focuses on the vascular plants of Callahan Mine in Brooksville, ME, USA, a Superfund site contaminated with Cu, Zn, Pb, and other pollutants. One hundred and fifty-five taxa belonging to 50 families were identified, with the Asteraceae (21%), Poaceae (11%), and Rosaceae (9%) as the most species-rich families. Ninety-six species encountered at the Mine were native to North America (62%), including 11 taxa (7%) with rarity status in at least one New England state. Fifty-one species were non-native (33%), including nine taxa (6%) considered invasive in at least one New England state. We characterized how the plant community changed across different habitats at the Mine, from disturbed and exposed (waste rock piles, tailings pond) to inundated and relatively undisturbed (wetland, shore), and documented concurrent shifts in the ionic content of the soils across the habitats. We found substantial differences in both the plant community and soil chemical features among habitats. Habitats separated out along a single axis of an ordination of the plant community, with wetland and shore habitats at one extreme and tailings pond and waste rock-pile habitats at the other. The first principal component axis of the 21 soil variables was significantly predicted by the ordination of the plant community, indicating a gradient of increasing organic matter, Fe, Mg, Mn, total N, Na, and K roughly parallel to the gradient of increasing wetland vegetation. None of the plant species tested accumulated substantial concentrations of metals in their leaf tissue except Salix bebbiana and Populus balsamifera, which accumulated 1070 ppm and 969 ppm Zn in dry leaf tissue, respectively-approximately one-third of the concentration considered as hyperaccumulation for Zn. 283 284 Rhodora [Vol. 116
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.