Background
Maternal recognition is the crucial step for establishing pregnancy in cattle. This study aims to identify endometrial genes and biological pathways involved in the maternal recognition of pregnancy. Caruncular endometrial tissues were collected from Day 15–17 of gestation (pregnant), non-pregnant (absence of conceptus), and cyclic (non-bred) heifers.
Results
Total RNAs were isolated from the caruncular endometrial tissues of pregnant, non-pregnant, and cyclic heifers, and were subjected to high-throughput RNA-sequencing. The genes with at least two-fold change and Benjamini and Hochberg p-value ≤ 0.05 were considered differentially expressed genes and further confirmed with quantitative real-time PCR. A total of 107 genes (pregnant vs cyclic) and 98 genes (pregnant vs non-pregnant) were differentially expressed in the pregnant endometrium. The most highly up-regulated genes in the pregnant endometrium were MRS2, CST6, FOS, VLDLR, ISG15, IFI6, MX2, C15H11ORF34, EIF3M, PRSS22, MS4A8, and TINAGL1. Interferon signaling, immune response, nutrient transporter, synthesis, and secretion of proteins are crucial pathways during the maternal recognition of pregnancy.
Conclusions
The study demonstrated that the presence of conceptus at Day 15–17 of gestation affects the endometrial gene expression related to endometrial remodeling, immune response, nutrients and ion transporters, and relevant signaling pathways in the caruncular region of bovine endometrium during the maternal recognition of pregnancy.
The objective of this study was to compare the carcass quality and meat tenderness of Hawaii cattle finished on subtropical pasture with those of mainland US feedlot-finished cattle that were shipped from Hawaii after weaning. Rib-eye steak samples were collected from 30 feedlot-finished cattle harvested at a slaughter house in Washington State, USA and from 13 subtropical pasture-finished cattle harvested at a local slaughter house in Hawaii, then shipped to meat science laboratory at the University of Hawaii, Manoa. Samples were aged for 2 weeks at 4°C and frozen for later proximate analysis and meat tenderness measurement. Feedlot-finished cattle had significantly heavier carcass weight (353 vs 290 kg) and thicker backfat (13.5 vs 6.6 mm), but no significant difference was observed in rib-eye area between the two groups. Marbling score (Small) and United States Department of Agriculture quality grade (Choice) of the pasture-finished beef were not significantly (P < 0.05) different from those of feedlot-finished beef. The shear force value of pasture-finished beef (5.18 kg) was not statistically different (P < 0.05) from that of feedlot-finished beef (4.40 kg). In conclusion, results of this study suggest that Hawaii cattle finished on subtropical pasture produced as tender beef as mainland feedlot-finished cattle with less intramuscular fat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.