While NiTiPd alloys have been extensively studied for proposed use in high-temperature shapememory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd) 49.5 Ti 50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.
a b s t r a c tThe mechanical and functional behaviors of a Ni-rich Ni 50.3 Ti 29.7 Hf 20 high temperature shape memory alloy were investigated through combined ex situ macroscopic experiments and in situ synchrotron X-ray diffraction. Isothermal tension and compression tests were conducted between room temperature and 260 C, while isobaric thermomechanical cycling experiments were conducted at selected stresses up to 700 MPa. Isothermal testing of the martensite phase revealed no plastic strain up to the test limit of 1 GPa and near-perfect superelastic behavior up to 3% applied strain at temperatures above the austenite finish. Excellent dimensional stability with greater than 2.5% actuation strain without accumulation of noticeable residual strains (at stresses less than or equal to À400 MPa) were observed during isobaric thermal cycling experiments. The absence of residual strain accumulation during thermomechanical cycling was confirmed by the lattice strains, determined from X-ray spectra. Even in the untrained condition, the material exhibited little or no history or path dependence in behavior, consistent with measurements of the bulk texture after thermomechanical cycling using synchrotron X-ray diffraction. Post deformation cycling revealed the limited conditions under which a slight two-way shape memory effect (TWSME) was obtained, with a maximum of 0.34% two-way shape memory strain after thermomechanical cycling under À700 MPa.Published by Elsevier Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.