Non-peripherally octakis-substituted phthalocyanines (npPc’s), MPc(C12H25)8 with M = 2H (3) or Zn (4), as well as peripherally octakis-substituted phthalocyanines (pPc’s) with M = Zn (6), Mg (7) and 2H (8), were synthesized by cyclotetramerization of 3,6- (2) or 4,5-bis(dodecyl)phthalonitrile (5), template cyclotetramerization of precursor phthalonitriles in the presence of Zn or Mg, metal insertion into metal-free phthalocyanines, and removal of Mg or Zn from the phthalocyaninato coordination cavity. The more effective synthetic route towards pPc 8 was demetalation of 7. npPc’s were more soluble than pPc’s. The Q-band λmax of npPc’s was red-shifted with ca. 18 nm, compared to that of pPc’s. X-ray photoelectron spectroscopy (XPS) differentiated between N–H, Nmeso and Ncore nitrogen atoms for metal-free phthalocyanines. Binding energies were ca. 399.6, 398.2 and 397.7 eV respectively. X-ray photoelectron spectroscopy (XPS) also showed zinc phthalocyanines 4 and 6 have four equivalent Nmeso and four equivalent N–Zn core nitrogens. In contrast, the Mg phthalocyanine 7 has two sets of core N atoms. One set involves two Ncore atoms strongly coordinated to Mg, while the other encompasses the two remaining Ncore atoms that are weakly associated with Mg. pPc’s 6, 7, and 8 have cyclic voltammetry features consistent with dimerization to form [Pc][Pc+] intermediates upon oxidation but npPc’s 3 and 4 do not. Metalation of metal-free pPc’s and npPc’s shifted all redox potentials to lower values.
Ferrocenylbutoxy-bearing dodecylated phthalocyanines, MPc(C 12 H 25 ) x (OC 4 H 8 Fc) y with M = 2H (compound series 6 and 8) or Zn (compound series 5, 7 and 9), x ≤ 8 and y ≤ 4, were synthesized through either metal-free statistical condensation between 3,6-bis(dodecyl)phthalonitrile, 2, and 4-(1), or 3-(4′ferrocenylbutoxy)phthalonitrile, 4, or a zinc template statistical condensation between 4,5-bis(dodecyl)phthalonitrile, 3, and 1 in the presence of anhydrous zinc acetate, or by zinc insertion into metal-free phthalocyanines. Compounds were designed to have eight nonperipheral dodecyl substituents, six nonperipheral dodecyl, either one peripheral or one nonperipheral 4′ferrocenylbutoxy substituent, four nonperipheral dodecyl and two peripheral 4′-ferrocenylbutoxy substituents, or four peripheral 4′ferrocenylbutoxy substituents. The compound having six peripheral dodecyl and one peripheral 4′-ferrocenylbutoxy substituents was also synthesized. Metal-free and zinc complex Q-band maximum absorption wavelengths increased nonlinearly from 704 to 725 nm for the Q y -band of metal-free compounds, or from 676 to 699 nm for the Q-band of zinc complexes in moving from all peripheralsubstituted to all non-peripheral-substituted complexes. A rare case of accidental Q-band degeneracy where only one electronic Qband is observed for asymmetrical zinc complexes NOT having D 4h symmetry, compounds 5, 7b−e, and 9b, is also described. X-ray photoelectron spectroscopy (XPS) differentiated between four types of phthalocyanine nitrogen atoms; binding energies were ca. 399.8 (N−H), 398.1 (N meso ), 397.8 (N core ), and 398.7 eV (N−Zn), respectively. An electrochemical study of these compounds revealed up to five different redox processes in dichloromethane but only three in tetrahydrofuran (THF). The first ring-based oxidation of both metal-free compounds 6a−e and zinc phthalocyanines 7a−e exhibited a near-linear increase in peak anodic potentials, E pa , with the systematic replacement of two nonperipheral dodecyl substituents with one peripheral 4′-ferrocenylbutoxy group. When four 4′-ferrocenylbutoxy groups were substituted on the phthalocyanine macrocycle, aggregation of the first oxidized species was observed. Zinc insertion into metal-free phthalocyanines lowered formal redox potentials. An electrochemical scheme consistent with electrochemical results is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.