Parkinsonian patients may have symptoms consistent with intestinal pseudo-obstruction, but a primary intestinal abnormality has not been shown. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after conversion to a toxic metabolite via the monoamine oxidase system, can induce Parkinson's disease by destroying dopaminergic neurons in the substantia nigra in humans and primates. Rodents have some catecholamine depletion but much less so than primates. Using chronic bipolar electrodes on the proximal jejunum of Wistar rats, we show significant, chronic migrating myoelectric complex disruption (P less than 0.001) and prolongation of irregular spike activity (P less than 0.001). Pargyline (a monoamine oxidase inhibitor) pretreatment significantly blocked these myoelectric changes. Sinemet (L-dopa and carbidopa), given after MPTP to replete dopamine, decreased the MPTP-induced migrating myoelectric complex disruption. Jejunal myenteric plexus dopamine levels were significantly decreased (to 61% of control) after MPTP but after much higher doses than were required to disrupt migrating myoelectric complex activity (180 mg/kg total vs. 30 mg/kg). Dopamine in the central nervous system was not depleted. We conclude that MPTP causes intestinal myoelectric disruption (which can be blocked by pargyline and decreased by Sinemet) possibly through enteric, but not central, nervous system effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.