In this paper we formulate a SAT/SMT model for Rotational-XOR (RX) cryptanalysis in ARX primitives for the first time. The model is successfully applied to the block cipher family Speck, and distinguishers covering more rounds than previously are found, as well as RX-characteristics requiring less data to detect. In particular, we present distinguishers for 10, 11 and 12 rounds for Speck32/64 which have better probabilities than the previously known 9-round differential characteristic, for a certain weak key class. For versions of Speck48, we present several distinguishers, among which the longest one covering 15 rounds, while the previously best differential characteristic only covered 11.
Aims Although mobile health tools using photoplethysmography (PPG) technology have been validated for the detection of atrial fibrillation (AF), their utility for heart rate assessment during AF remains unclear. Therefore, we aimed to evaluate the accuracy of continuous PPG-based 1 min mean heart rate assessment during AF. Methods and results Persistent AF patients were provided with Holter electrocardiography (ECG) (for ≥24 h) simultaneously with a PPG-equipped smartwatch. Both the PPG-based smartwatch and Holter ECG automatically and continuously monitored patients’ heart rate/rhythm. ECG and PPG recordings were synchronized and divided into 1 min segments, from which a PPG-based and an ECG-based average heart rate estimation were extracted. In total, 47 661 simultaneous ECG and PPG 1 min heart rate segments were analysed in 50 patients (34% women, age 73 ± 8 years). The agreement between ECG-determined and PPG-determined 1 min mean heart rate was high [root mean squared error (RMSE): 4.7 bpm]. The 1 min mean heart rate estimated using PPG was accurate within ±10% in 93.7% of the corresponding ECG-derived 1 min mean heart rate segments. PPG-based 1 min mean heart rate estimation was more often accurate during night-time (97%) than day-time (91%, P < 0.001) and during low levels (96%) compared to high levels of motion (92%, P < 0.001). A neural network with a 10 min history of the recording did not further improve the PPG-based 1 min mean heart rate assessment [RMSE: 4.4 (95% confidence interval: 3.5–5.2 bpm)]. Only chronic heart failure was associated with a lower agreement between ECG-derived and PPG-derived 1 min mean heart rates (P = 0.040). Conclusion During persistent AF, continuous PPG-based 1 min mean heart rate assessment is feasible in 60% of the analysed period and shows high accuracy compared with Holter ECG for heart rates <110 bpm.
The paper addresses to the calculation of the interruption limit of circuit breakers in connection with equivalence studies on synthetic test circuits. After a presentation of the applied arc‐equation, a method is presented to detect the calculated interruption limit by the rate of rise of the conductance minimum as a function of the current slope. Thus, a range of decision can be defined, in order to reduce the effort for equivalence studies of synthetic test circuits.
The paper addresses to the design of high‐voltage circuits for synthetic circuit‐breaker testing. After a presentation of two different test circuits, a general cost function is defined, which has to be minimized in order to get the best combination of elements for these circuits. The applied algorithm is described in combination with a network calculation program as a method in order to automate the design of synthetic test circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.