The development of new synthetic technologies for the selective fluorination of organic compounds has increased with the escalating importance of fluorine-containing pharmaceuticals. Traditional methods potentially applicable to drug synthesis rely on the use of ionic forms of fluorine (F(-) or F(+)). Radical methods, while potentially attractive as a complementary approach, are hindered by a paucity of safe sources of atomic fluorine (F(•)). A new approach to alkyl fluorination has been developed that utilizes the reagent N-fluorobenzenesulfonimide as a fluorine transfer agent to alkyl radicals. This approach is successful for a broad range of alkyl radicals, including primary, secondary, tertiary, benzylic, and heteroatom-stabilized radicals. Furthermore, calculations reveal that fluorine-containing ionic reagents are likely candidates for further expansion of this approach to polar reaction media. The use of these reagents in alkyl radical fluorination has the potential to enable powerful new transformations that otherwise would take multiple synthetic steps.
There is a global effort to convert sunlight into fuels by photoelectrochemically splitting water to form hydrogen fuels, but the dioxygen byproduct bears little economic value. This raises the important question of whether higher value commodities can be produced instead of dioxygen. We report here photoelectrochemistry at a BiVO4 photoanode involving the oxidation of substrates in organic media. The use of MeCN instead of water enables a broader set of chemical transformations to be performed (e.g., alcohol oxidation and C-H activation/oxidation), while suppressing photocorrosion of BiVO4 that otherwise occurs readily in water, and sunlight reduces the electrical energy required to drive organic transformations by 60%. These collective results demonstrate the utility of using photoelectrochemical cells to mediate organic transformations that otherwise require expensive and toxic reagents or catalysts.
Cooperative heterobimetallic catalysis was used as a design principle to achieve a highly reactive system for the enantioselective conjugate addition of cyanide to alpha,beta-unsaturated imides. A dual-catalyst pathway involving chiral (salen)Al complex 1b and chiral (pybox)Er complex 4b provides measurable improvements in rates and enantioselectivities relative to single-catalyst systems. Mechanistic studies point to a cooperative bimetallic mechanism involving activation of the imide by the Al complex and activation of cyanide by the Er complex.
(Salen)Al-Cl complex 1a catalyzes the asymmetric conjugate addition of hydrogen cyanide to alpha,beta-unsaturated imides in high yields and enantioselectivities. The cyanide adducts can readily be converted into a variety of useful chiral building blocks, including alpha-substituted-beta-amino acids and beta-substituted-gamma-aminobutyric acids. Mechanistic data obtained thus far point to a cooperative bimetallic mechanism for nucleophile and electrophile activation.
We have developed the first example of a photoredox catalytic method for the formation of carbon-fluorine (C-F) bonds. The mechanism has been studied using transient absorption spectroscopy and involves a key single-electron transfer from the (3)MLCT (triplet metal-to-ligand charge transfer) state of Ru(bpy)3(2+) to Selectfluor. Not only does this represent a new reaction for photoredox catalysis, but the mild reaction conditions and use of visible light also make it a practical improvement over previously developed UV-mediated decarboxylative fluorinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.