High‐sensitivity GPS (HSGPS) receivers permit GPS signal measurements to be acquired and tracked in certain indoor environments where this previously was not possible. However, solution reliability and accuracy are significantly degraded because of the nonavailability of some satellites, multipath errors, measurement noise associated with the low power of the remaining signals, and echo‐only and cross‐correlation signal tracking. The focus of this paper is on improving static‐mode HSGPS positioning performance in terms of accuracy and reliability. Thus, various techniques, such as height fixing, simulation‐based noise modeling, reliability testing in terms of fault detection and exclusion (FDE), and batch processing, are implemented. An XTrac‐LPTM HSGPS evaluation kit, developed by SiRF Technologies Inc., is used to investigate some indoor environments by analyzing the fading and pseudorange error conditions. In addition, the measurements provided by the receiver are used to test the performance of the algorithms intended to improve the HSGPS positioning capability.
Ultra-wideband (UWB) ranging radios, an emerging technology that offers precise, short distance range measurements are investigated as a method to augment carrier-phase GPS positioning. A commercially available UWB ranging system is used in a tightly-coupled GPS and UWB real-time kinematic (RTK) system. The performance of the tightly-coupled system is evaluated in static and kinematic testing. This work demonstrates that UWB errors can be successfully estimated in a real-time filter. The results of static testing show that the integrated solution provides better accuracy, better ability to resolve integer ambiguities and enhanced fixed ambiguity solution availability compared with GPS alone. In kinematic testing in a degraded GPS environment, sub-decimetre accuracy was maintained.
This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer–Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging.
A tightly coupled filter integrating GPS and ultra-wideband (UWB) observations for high-precision position applications is implemented and tested to survey several external corner points of an eight story building. The filter uses GPS pseudoranges, GPS carrier-phase measurements, and UWB ranges and includes in-run estimation of UWB bias and scale factor states. The filter employs inequality constraints and innovation testing to mitigate the effects of unmodeled errors. The tightly coupled solution is compared to GPS-only, UWB-only, and loosely coupled solutions. The ability of each solution to detect measurement blunders is compared. Sub-meter level position solutions are maintained using tight-coupling in conditions where the solutions from the other three approaches are either unavailable or unreliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.