There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences–i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost effective at greater depths. Nature-based defence projects also report benefits ranging from reductions in storm damage to reductions in coastal structure costs.
The ocean, which regulates climate and supports vital ecosystem services, is crucial to our Earth system and livelihoods. Yet, it is threatened by anthropogenic pressures and climate change. A healthy ocean that supports a sustainable ocean economy requires adequate financing vehicles that generate, invest, align, and account for financial capital to achieve sustained ocean health and governance. However, the current finance gap is large; we identify key barriers to financing a sustainable ocean economy and suggest how to mitigate them, to incentivize the kind of public and private investments needed for topnotch science and management in support of a sustainable ocean economy.
Rwanda, a small but rapidly developing central African nation, has undertaken development of natural capital accounts to better inform its economic development through the World Bank's Wealth Accounting and Valuation of Ecosystem Services (WAVES) Partnership. In this paper, we develop ecosystem service (ES) models to quantify ecosystem condition and physical supply components of ecosystem accounts in Rwanda from 1990 to 2015. We applied the InVEST carbon storage, sediment delivery ratio, nutrient delivery ratio, and annual and seasonal water yield models to map changes in potential ES supply nationwide. We also quantified flows of sediment, water and nutrients to 96 hydroelectric dam, irrigation dam and water treatment plant sites. Over a 25‐year period, we found declines in all ES, which were most strongly driven by conversion of forests to cropland. Declines were most pronounced from 1990 to 2000 and 2010 to 2015; ES were relatively stable from 2000 to 2010 (with the exception of nutrient exports to water bodies, which jumped most sharply from 2000 to 2010). From 2010 to 2015, over 42% of Rwanda's water‐use sites (representing 9% of the nation's hydroelectric generation capacity and 59% of its water treatment capacity) had upstream increases in sediment export and quick flow greater than the national average. Half of Rwanda's water treatment plants had upstream phosphorus exports greater than the national average. Our results quantify nation‐wide ES trends, their implications for key water‐dependent industries, and the importance of protected areas in safeguarding ES flows and potential supply in Rwanda. They also provide data that can be integrated with existing land, water and economic accounts for Rwanda, as well as a baseline to inform development strategies that better link economic and environmental goals. A free Plain Language Summary can be found within the Supporting Information of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.