Summary1. Allometric equations are currently used to estimate above-ground biomass (AGB) based on the indirect relationship with tree parameters. Terrestrial laser scanning (TLS) can measure the canopy structure in 3D with high detail. In this study, we develop an approach to estimate AGB from TLS data, which does not need any prior information about allometry. We compare these estimates against destructively harvested AGB estimates and AGB derived from allometric equations. We also evaluate tree parameters, diameter at breast height (DBH) and tree height, estimated from traditional field inventory and TLS data. 2. Tree height, DBH and AGB data are collected through traditional forest inventory, TLS and destructive sampling of 65 trees in a native Eucalypt Open Forest in Victoria, Australia. Single trees are extracted from the TLS data and quantitative structure models are used to estimate the tree volume directly from the point cloud data. AGB is inferred from these volumes and basic density information and is then compared with the estimates derived from allometric equations and destructive sampling. 3. AGB estimates derived from TLS show a high agreement with the reference values from destructive sampling, with a concordance correlation coefficient (CCC) of 0Á98. The agreement between AGB estimates from allometric equations and the reference is lower (CCC = 0Á68-0Á78). Our TLS approach shows a total AGB overestimation of 9Á68% compared to an underestimation of 36Á57-29Á85% for the allometric equations. 4. The error for AGB estimates using allometric equations increases exponentially with increasing DBH, whereas the error for AGB estimates from TLS is not dependent on DBH. The TLS method does not rely on indirect relationships with tree parameters or calibration data and shows better agreement with the reference data compared to estimates from allometric equations. Using 3D data also enables us to look at the height distributions of AGB, and we demonstrate that 80% of the AGB at plot level is located in the lower 60% of the trees for a Eucalypt Open Forest. This method can be applied in many forest types and can assist in the calibration and validation of broad-scale biomass maps.
There are many techniques for measuring leaf area index (LAI) and forest canopy foliage profiles but their accuracy is questionable. This paper briefly reviews current methods of estimating forest LAI and presents a novel, ground-based laser system, Echidna that can make a wide range of measurements of forest structure, including LAI. Here, use of the system to provide field data and derived gap probabilities in the form of a 'hemispherical photograph with range' is demonstrated. The results show consistency and reproducibility and do not depend on special conditions for the natural light field.
Plot-scale measurements have been the foundation for forest surveys and reporting for over 200 years. Through recent integration with airborne and satellite remote sensing, manual measurements of vegetation structure at the plot scale are now the basis for landscape, continental and international mapping of our forest resources. The use of terrestrial laser scanning (TLS) for plot-scale measurement was first demonstrated over a decade ago, with the intimation that these instruments could replace manual measurement methods. This has not yet been the case, despite the unparalleled structural information that TLS can capture. For TLS to reach its full potential, these instruments cannot be viewed as a logical progression of existing plot-based measurement. TLS must be viewed as a disruptive technology that requires a rethink of vegetation surveys and their application across a wide range of disciplines. We review the development of TLS as a plotscale measurement tool, including the evolution of both instrument hardware and key data processing methodologies. We highlight two broad data modelling approaches of gap probability and geometrical modelling and the basic theory that underpins these. Finally, we discuss the future prospects for increasing the utilisation of TLS for plot-scale forest assessment and forest monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.