The elucidation of the molecular and immunological mechanisms mediating maintenance of latency in human tuberculosis aids to develop more effective vaccines and to define biologically meaningful markers for immune protection. We analyzed granuloma-associated lymphocytes (GALs) from human lung biopsies of five patients with latent Mycobacterium tuberculosis (MTB) infection. MTB CD4+ and CD8+ T cell response was highly focused in the lung, distinct from PBL, as assessed by TCR-CDR3 spectratyping coupled with a quantitative analysis of TCR VB frequencies. GALs produced IFN-γ in response to autologous macrophages infected with MTB and to defined MTB-derived HLA-A2-presented peptides Ag85a242–250, Ag85b199–207, early secreted antigenic target 6 (ESAT-6)28–36, 19-kDa Ag88–97, or the HLA-DR-presented ESAT-61–20 epitope. Immune recognition of naturally processed and presented MTB epitopes or the peptide ESAT-61–20 could be linked to specific TCR VB families, and in two patients to unique T cell clones that constituted 19 and 27%, respectively, of the CD4+ and 17% of the CD8+ GAL population. In situ examination of MTB-reactive GALs by tetramer in situ staining and confocal laser-scanning microscopy consolidates the presence of MHC class I-restricted CD8+ T cells in MTB granuloma lesions and supports the notion that clonally expanded T cells are crucial in immune surveillance against MTB.
CD8(+) T cells play a central role in immune protection against infection with Mycobacterium tuberculosis. One of the target epitopes for anti-M. tuberculosis directed CD8(+) T cells is the HLA-A2-restricted 19-kDa lipoprotein peptide VLTDGNPPEV. T cell clones directed against this epitope recognized not only the nominal peptide ligand, but also a closely related peptide (VPTDPNPPEV) from the HIV envelope gp120 (HIV(env) gp120) protein characterized by IFN-gamma release. This cross-reactivity was confirmed in ex vivo in M. tuberculosis 19-kDa tetramer-sorted T cells from patients with tuberculosis and in HIVgp120 tetramer-reactive T cells sorted from HIV(+) patients. M. tuberculosis 19-kDa antigen-reactive T cells were present in HLA-A2(+) patients (10/10) with HIV infection with no evidence of M. tuberculosis infection, but they are absent in peripheral blood lymphocytes from healthy HLA-A2(+) individuals (10/10). M. tuberculosis 19-kDa antigen-reactive T cells were elevated in acute pulmonary tuberculosis, declined with response to therapy (7/10 patients) and resided in the terminally differentiated CD8(+) T cell subset. CD8(+) cross-reactive T cells recognizing HIV(env) or M. tuberculosis 19-kDa antigens may contribute to pathogenesis in individuals co-infected with both pathogens and may also present a marker for active tuberculosis.
SUMMARYIn response to antigenic stimulation, naive MHC-class I restricted and antigen-specific + CD45 + CD28 -T cells define antigen/peptide-specific and MHCrestricted responses. These data were confirmed in PBL from patients with tuberculosis using HLA-A2 tetramer-complexes loaded with a peptide from the M. tuberculosis Ag85b antigen by flow cytometry. The sorting of this T cell subset enables to determine the fine specificity of CD8 + effector T cells without the need for in vitro manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.