Global surveillance for a novel rhinovirus genotype indicated its association with community outbreaks and pediatric respiratory disease in Africa, Asia, Australia, Europe, and North America. Molecular dating indicates that these viruses have been circulating for at least 250 years.
Limited experience and a lack of validated diagnostic reagents make Burkholderia pseudomallei, the cause of melioidosis, difficult to recognize in the diagnostic microbiology laboratory. We compared three methods of confirming the identity of presumptive B. pseudomallei strains using a collection of Burkholderia species drawn from diverse geographic, clinical, and environmental sources. The 95 isolates studied included 71 B. pseudomallei and 3 B. thailandensis isolates. The API 20NE method identified only 37% of the B. pseudomallei isolates. The agglutinating antibody test identified 82% at first the attempt and 90% including results of a repeat test with previously negative isolates. Gas-liquid chromatography analysis of bacterial fatty acid methyl esters (GLC-FAME) identified 98% of the B. pseudomallei isolates. The agglutination test produced four false positive results, one B. cepacia, one B. multivorans, and two B. thailandensis. API produced three false positive results, one positive B. cepacia and two positive B. thailandensis. GLC-FAME analysis was positive for one B. cepacia isolate. On the basis of these results, the most robust B. pseudomallei discovery pathway combines the previously recommended isolate screening tests (Gram stain, oxidase test, gentamicin and polymyxin susceptibility) with monoclonal antibody agglutination on primary culture, followed by a repeat after 24 h incubation on agglutination-negative isolates and GLC-FAME analysis. Incorporation of PCR-based identification within this schema may improve percentages of recognition further but requires more detailed evaluation.Burkholderia pseudomallei, the cause of melioidosis, can be difficult to reliably identify in the clinical microbiology laboratory. Many diagnostic laboratories have no experience of this species. Even in locations such as Southeast Asia and northern Australia where melioidosis is endemic, a preponderance of septicemic cases during the wet season results in a low expectation of B. pseudomallei in clinical specimens at other times of year (1). Practical difficulties for the diagnostic laboratory include the presence of closely related Burkholderia species in specimens from nonsterile sites and atypical colony morphology of some B. pseudomallei strains (4). Despite clear recommendations for screening suspect B. pseudomallei colonies (3), there is wide variation in the approaches used by diagnostic laboratories. Moreover, a lack of properly validated diagnostic test reagents means that laboratories have to rely on biochemical tests for definitive identification. The substrate utilization test panels in current diagnostic use can generate misleading identification profiles (6).These problems and the rarity of melioidosis outside of northern Australia and Southeast Asia highlight the need for a more standardized culture-based diagnostic pathway. In the present study we evaluated phenotypic identification methods used in Australia to develop a laboratory case definition of melioidosis. This approach aims to integrate previou...
Both bacteria and viruses play a role in the development of acute otitis media, however, the importance of specific viruses is unclear. In this study molecular methods were used to determine the presence of nucleic acids of human rhinoviruses (HRV; types A, B, and C), respiratory syncytial viruses (RSV; types A and B), bocavirus (HBoV), adenovirus, enterovirus, coronaviruses (229E, HKU1, NL63, and OC43), influenza viruses (types A, B, and C), parainfluenza viruses (types 1, 2, 3, 4A, and 4B), human metapneumovirus, and polyomaviruses (KI and WU) in the nasopharynx of children between 6 and 36 months of age either with (n = 180) or without (n = 66) a history of recurrent acute otitis media and in 238 middle ear effusion samples collected from 143 children with recurrent acute otitis media. The co-detection of these viruses with Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis was analyzed. HRV (58.3% vs. 42.4%), HBoV (52.2% vs. 19.7%), polyomaviruses (36.1% vs. 15.2%), parainfluenza viruses (29.4% vs. 9.1%), adenovirus (25.0% vs. 6.1%), and RSV (27.8% vs. 9.1%) were detected significantly more often in the nasopharynx of children with a history of recurrent acute otitis media compared to healthy children. HRV was predominant in the middle ear and detected in middle ear effusion of 46% of children. Since respiratory viruses were detected frequently in the nasopharynx of both children with and without a history of recurrent acute otitis media, the etiological role of specific viruses in recurrent acute otitis media remains uncertain, however, anti-viral therapies may be beneficial in future treatment and prevention strategies for acute otitis media.
Reports of a novel influenza virus type A (H1N1),
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.