Sorghum (Sorghum bicolor (L.) Moench) is an important resource to the national economy and it is essential to assess the genetic diversity in existing sorghum germplasm for better conservation, utilization and crop improvement. The aim of this study was to evaluate the level of genetic diversity within and among sorghum germplasms collected from diverse institutes in Nigeria and Mali using Single Nucleotide Polymorphic markers. Genetic diversity among the germplasm was low with an average polymorphism information content value of 0.24. Analysis of Molecular Variation revealed 6% variation among germplasm and 94% within germplasms. Dendrogram revealed three groups of clustering which indicate variations within the germplasms. Private alleles identified in the sorghum accessions from National Center for Genetic Resources and Biotechnology, Ibadan, Nigeria and International Crop Research Institute for the Semi-Arid Tropics, Kano, Nigeria shows their prospect for sorghum improvement and discovery of new agronomic traits. The presence of private alleles and genetic variation within the germplasms indicates that the accessions are valuable resources for future breeding programs.
Understanding the adaptation mechanisms of sorghum to drought and the underlying genetic architecture may help to improve its production in a wide range of environments. By crossing a high yielding parent (HYP) and a drought tolerant parent (DTP), we obtained 140 recombinant inbred lines (RILs), which were genotyped with 120 DArT and SSR markers covering 14 linkage groups (LGs). A subset of 100 RILs was evaluated three times in control and drought treatments to genetically dissect their response to water availability. Plants with early heading date (HD) in the drought treatment maintained yield (YLD) level by reducing seed number SN and increasing hundred seed weight (HSW). In contrast, early HD in the control treatment increased SN, HSW and YLD. In total, 133 significant QTL associated with the measured traits were detected in ten hotspot regions. Antagonistic, pleiotropic effects of a QTL cluster mapped on LG-6 may explain the observed trade-offs between SN and HSW: Alleles from DTP reduced SN and the alleles from HYP increased HSW under drought stress, but not in the control treatment. Our results illustrate the importance of considering genetic and environmental factors in QTL mapping to better understand plant responses to drought and to improve breeding programs.
Retraction type (multiple responses allowed): Unreliable findings Lab error Inconsistent data Analytical error Biased interpretation X Other: One of the coauthors informed us that none of the coauthors was aware about the submission to our journal. The article was therefore retracted and the files were removed from our system Irreproducible results Failure to disclose a major competing interest likely to influence interpretations or recommendations Unethical research Fraud Data fabrication Fake publication Other: Plagiarism Self plagiarism Overlap Redundant publication * Copyright infringement Other legal concern: Editorial reasons Handling error Unreliable review(s) Decision error Other: Other: Results of publication (only one response allowed): X are still valid. were found to be overall invalid.
Striga hermonthica (Delile) Benth., commonly referred to as witch weed, is a major constraint to sorghum (Sorghum bicolor (L.) Moench) production in the Northern region of Nigeria because of high yield losses due to infestation. To identify parental lines useful in breeding for S. hermonthica resistant sorghum genotypes adapted to Nigeria, twenty-five sorghum accessions were evaluated in Nigeria across three test environments. Both phenotypic and genetic components influenced the variation observed in the sorghum accessions. The estimates for the genetic coefficient of variation, heritability and genetic advance for the area under Striga number progress curve (ASUNPC), Striga emergence counts, yield and other agronomic traits, obtained in this study revealed that genetic gain for resistance to S. hermonthica could be realized through selection. Based on the performance of the 25 sorghum accessions SRN39, Danyana, Sepon82, and SAMSORG40 were the top four accessions found to be most resistant to S. hermonthica. Assessment of resistance was based on the low Striga emergence counts and the ASUNPC values. These accessions can be used as donor sources of S. hermonthica resistant genes for introgression into cultivars adapted to Nigeria, followed by recombination breeding for pyramiding the different resistance mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.