Background: Vertebrate glucocorticoid receptor (GR) is an evolutionary-conserved cortisol-regulated nuclear receptor that controls key metabolic and developmental pathways. Upon binding to cortisol, GR acts as an immunosuppressive transcription factor. Drosophila melanogaster, a model organism to study innate immunity, can also be immunosuppressed by glucocorticoids. However, while the genome of fruit fly harbors 18 nuclear receptor genes, the functional homolog of vertebrate GR has not been identified. Results: In this study, we demonstrated that while D. melanogaster is susceptible to Saccharomyces cerevisiae oral infection, the oral exposure to cortisol analogs, cortisone acetate or estrogen, increases fly sensitivity to yeast challenge. To understand the mechanism of this steroid-induced immunosuppression, we identified the closest genetic GR homolog as D. melanogaster Estrogen Related Receptor (ERR) gene. We discovered that Drosophila ERR is necessary for cortisone acetate-and estrogen-mediated increase in sensitivity to fungal infection: while ERR mutant flies are as sensitive to the fungal challenge as the wildtype flies, the yeast-sensitivity of ERR mutants is not increased by these steroids. Interestingly, the fungal cortisone analog, ergosterol, did not increase the susceptibility of Drosophila to yeast infection. The immunosuppressive effect of steroids on the sensitivity of flies to fungi is evolutionary conserved in insects, as we show that estrogen significantly increases the yeast-sensitivity of Culex quinquefasciatus mosquitoes, whose genome contains a close ortholog of the fly ERR gene. Conclusions: This study identifies a D. melanogaster gene that structurally resembles vertebrate GR and is functionally necessary for the steroid-mediated immunosuppression to fungal infections.
The genders of Drosophila melanogaster vary in their sensitivities to microbial pathogens. While many of the immunity-related genes are located on the X chromosome, the polymorphisms within the Y chromosome were also shown to affect the immunity of flies. In this study, we investigated the necessity of individual genes on the Y chromosome (Y-genes) for male sensitivity to microbes. We identified several Y-genes whose genetic inactivation either increases or decreases the sensitivity of males to gastrointestinal infections with fungal Saccharomyces cerevisiae and bacterial Serratia liquefaciens. Specifically, the loss of function mutations in fly kl-5 and Ppr-Y Y-genes lead to increased and decreased sensitivity of males to fungal challenge, respectively, compared to female sensitivity. In contrast, mutations in Drosophila Pp1-Y1, kl-5, kl-3, Ppr-Y, CCY, and FDY Y-genes lead to increased sensitivity of males to bacterial infection, compared to females. Moreover, while these Y-genes are necessary, the Y chromosome is not sufficient for the sensitivity of males to microbes, since the sensitivity of XXY females to fungal and bacterial challenges was not different from the sensitivity of wild-type female flies, compared to males. This study assigns a new immunity-related function to numerous Y-genes in D.melanogaster.
Anthrax is a major zoonotic disease of wildlife, and in places like West Africa, it can be caused by Bacillus anthracis in arid nonsylvatic savannahs, and by B. cereus biovar anthracis (Bcbva) in sylvatic rainforests. Bcbva-caused anthrax has been implicated in as much as 38% of mortality in rainforest ecosystems, where insects can enhance the transmission of anthrax-causing bacteria. While anthrax is well-characterized in mammals, its transmission by insects points to an unidentified anthrax-resistance mechanism in its vectors. In mammals, a secreted anthrax toxin component, 83 kDa Protective Antigen (PA 83), binds to cellsurface receptors and is cleaved by furin into an evolutionary-conserved PA 20 and a poreforming PA 63 subunits. We show that PA 20 increases the resistance of Drosophila flies and Culex mosquitoes to bacterial challenges, without directly affecting the bacterial growth. We further show that the PA 83 loop known to be cleaved by furin to release PA 20 from PA 63 is, in part, responsible for the PA 20-mediated protection. We found that PA 20 binds directly to the Toll activating peptidoglycan-recognition protein-SA (PGRP-SA) and that the Toll/NF-κB pathway is necessary for the PA 20-mediated protection of infected flies. This effect of PA 20 on innate immunity may also exist in mammals: we show that PA 20 binds to human PGRP-SA ortholog. Moreover, the constitutive activity of Imd/NF-κB pathway in MAPKK Dsor1 mutant flies is sufficient to confer the protection from bacterial infections in a manner that is independent of PA 20 treatment. Lastly, Clostridium septicum alpha toxin protects flies from anthrax-causing bacteria, showing that other pathogens may help insects resist anthrax. The mechanism of anthrax resistance in insects has direct implications on insect-mediated anthrax transmission for wildlife management, and with potential for applications, such as reducing the sensitivity of pollinating insects to bacterial pathogens.
Anthrax is caused by Bacillus anthracis and can result in nearly 100% mortality due in part to anthrax toxin. Antimalarial amodiaquine (AQ) acts as a host-oriented inhibitor of anthrax toxin endocytosis. Here, we determined the pharmacokinetics and safety of AQ in mice, rabbits, and humans as well as the efficacy in the fly, mouse, and rabbit models of anthrax infection. In the therapeutic-intervention studies, AQ nearly doubled the survival of mice infected subcutaneously with a B. anthracis dose lethal to 60% of the animals (LD60). In rabbits challenged with 200 LD50 of aerosolized B. anthracis, AQ as a monotherapy delayed death, doubled the survival rate of infected animals that received a suboptimal amount of antibacterial levofloxacin, and reduced bacteremia and toxemia in tissues. Surprisingly, the anthrax efficacy of AQ relies on an additional host macrophage-directed antibacterial mechanism, which was validated in the toxin-independent Drosophila model of Bacillus infection. Lastly, a systematic literature review of the safety and pharmacokinetics of AQ in humans from over 2 000 published articles revealed that AQ is likely safe when taken as prescribed, and its pharmacokinetics predicts anthrax efficacy in humans. Our results support the future examination of AQ as adjunctive therapy for the prophylactic anthrax treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.