BackgroundGene orthology has been well studied in the evolutionary area and is thought to be an important implication to functional genome annotations. As the accumulation of transcriptomic data, alternative splicing is taken into account in the assignments of gene orthologs and the orthology is suggested to be further considered at transcript level. Whether gene or transcript orthology, exons are the basic units that represent the whole gene structure; however, there is no any reported study on how to build exon level orthology in a whole genome scale. Therefore, it is essential to establish a gene-oriented exon orthology dataset.ResultsUsing a customized pipeline, we first build exon orthologous relationships from assigned gene orthologs pairs in two well-annotated genomes: human and mouse. More than 92% of non-overlapping exons have at least one ortholog between human and mouse and only a small portion of them own more than one ortholog. The exons located in the coding region are more conserved in terms of finding their ortholog counterparts. Within the untranslated region, the 5' UTR seems to have more diversity than the 3' UTR according to exon orthology designations. Interestingly, most exons located in the coding region are also conserved in length but this conservation phenomenon dramatically drops down in untranslated regions. In addition, we allowed multiple assignments in exon orthologs and a subset of exons with possible fusion/split events were defined here after a thorough analysis procedure.ConclusionsIdentification of orthologs at the exon level is essential to provide a detailed way to interrogate gene orthology and splicing analysis. It could be used to extend the genome annotation as well. Besides examining the one-to-one orthologous relationship, we manage the one-to-multi exon pairs to represent complicated exon generation behavior. Our results can be further applied in many research fields studying intron-exon structure and alternative/constitutive exons in functional genomic areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.