The full-size ITER ion source prototype SPIDER (Source for the Production of Ions of Deuterium Extracted from a Radio frequency plasma) has recently started beam operation, whose objective is to produce 100 keV, 60 A hydrogen negative ions for 1 h. The source is presently operated in the volume regime, and the beam power is consequently limited. In such a configuration, the high resolution calorimeter STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment), even though uncooled, may be used instead of the SPIDER beam dump without limiting the beam-on time. STRIKE is formed by unidirectional carbon fiber–carbon matrix (CFC) composite tiles that are exposed to the beam while their temperature is recorded by using two infra-red cameras. This setup, thanks to the moderate broadening of the temperature profile guaranteed by the anisotropy of CFC, allows for the determination of detailed features of the beam current distribution (spatial resolution is about 2 mm). Furthermore, positively biasing the CFC tiles permits a direct electrical measurement of the negative ion beam current. Besides the total beam current and beam uniformity, which can be retrieved both by calorimetry and electrical measurement, beamlet divergence and deflection can be determined by infra-red thermography. This contribution describes the characterization of the SPIDER negative ion beam as a function of the source and accelerator parameters by means of the diagnostic calorimeter STRIKE in the volume regime.
Context. To date, stellar activity is one of the main limitations in detecting small exoplanets via the transit photometry technique. Since this activity is enhanced in young stars, traditional filtering algorithms may severely underperform in attempting to detect such exoplanets, with shallow transits often obscured by the photometric modulation of the light curve. Aims. This paper aims to compare the relative performances of four algorithms developed by independent research groups specifically for the filtering of activity in the light curves of young active stars, prior to the search for planetary transit signals: Notch and LOCoR (N&L), Young Stars Detrending (YSD), K2 Systematics Correction (K2SC), and VARLET. Our comparison also includes the two best-performing algorithms implemented in the Wōtan package: Tukey's biweight and Huber spline algorithms. Methods. For this purpose, we performed a series of injection-retrieval tests of planetary transits of different types, from Jupiter down to Earth-sized planets, moving both on circular and eccentric orbits. These experiments were carried out over a set of 100 realistically simulated light curves of both quiet and active solar-like stars (i.e., F and G types) that will be observed by the ESA Planetary Transits and Oscillations of stars (PLATO) space telescope, starting 2026. Results. From the experiments for transit detections, we found that N&L is the best choice in many cases, since it misses the lowest number of transits. However, this algorithm is shown to underperform when the planetary orbital period closely matches the stellar rotation period, especially in the case of small planets for which the biweight and VARLET algorithms work better. Moreover, for light curves with a large number of data-points, the combined results of two algorithms, YSD and Huber spline, yield the highest recovery percentage. Filtering algorithms allow us to obtain a very precise estimate of the orbital period and the mid-transit time of the detected planets, while the planet-to-star radius is underestimated most of the time, especially in cases of grazing transits or eccentric orbits. A refined filtering that takes into account the presence of the planet is thus compulsory for proper planetary characterization analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.