Immunoisolation of allogeneic cells within a membrane-bound device is a unique approach for gene therapy. We employed an immunoisolation device that protects allograft, but not xenograft, cells from destruction, to implant a human fibroblast line (MSU 1.2) in athymic rodents. Cells, transduced with the MFG-human factor IX retroviral vector, and expressing 0.9 microg/10(6) cells/day in vitro, were implanted in rats (four 40-microl devices, each containing 2 x 10(7) cells, two subcutaneously, two in epididymal fat) and in mice (two 20-microl devices, each containing 2 x 10(6) cells, subcutaneously). Plasma factor IX levels increased for 50 days, reaching maxima of 203 ng/ml (rat) and 597 ng/ml (mouse), and both continued at greater than 100 ng/ml for more than 140 days. A clone derived from the transduced cells, making 5 microg of factor IX/10(6) cells/day, was implanted within a device (one 20-microl device containing 2.5 x 10(6) cells), or without a device (1 x 10(7) cells implanted freely), either subcutaneously or in epididymal fat. The freely implanted cells expressed transiently, reaching more than 100 ng/ml in each site by day 4, but dropped to zero by day 20 (subcutaneous) or day 90 (epididymal fat). In devices, levels gradually increased to 100 ng/ml (subcutaneous) or 300 ng/ml (epididymal fat), remaining high for more than 100 days. These results show long-term, high-level expression of a human protein: (1) when cells are implanted within a cell transplantation device, but not when the cells are freely implanted, and (2) from a transgene driven by a viral promoter. An alloprotective device will enable the use of cloned cell lines that can be subjected to stringent quality control assessment that is impossible to achieve with autologous approaches.
Abstract. Studies with various thrombin derivativeshave shown that initiation of cell proliferation by thrombin requires two separate types of signals: one, generated by high affinity interaction of thrombin or DIP-thrombin (alpha-thrombin inactivated at ser 205 of the B chain by diisopropylphosphofluoridate) with receptors and the other, by thrombin's enzymic activity. To further study the role of high affinity thrombin receptors in initiation, we immunized mice with whole human fibroblasts and selected antibodies that blocked the binding of t25I-thrombin to high affinity receptors on hamster fibroblasts. One of these antibodies, TR-9, inhibits from 80 to 100% of t25I-thrombin binding, exhibits an immunofluorescent pattern indistinguishable from that of thrombin bound to receptors on these cells, and selectively binds solubilized thrombin receptors. By itself, TR-9 did not initiate DNA synthesis nor did it block thrombin initiation, but TR-9 addition to cells in the presence of alpha-thrombin, gammathrombin (0.5 gg/ml), or PMA stimulated thymidine incorporation up to threefold over controls. In all cases, maximal stimulation was observed at concentrations of TR-9, ranging from 1 to 4 nM corresponding to concentrations required to inhibit from 30 to 100% of ~25I-thrombin binding. These results demonstrate that the binding of the monoclonal antibody to the alpha-thrombin receptor can mimic the effects of thrombin's high affinity interaction with this receptor in stimulating cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.