Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10−10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p < 5x10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p = 1.3x10−22 and p = 8.1x10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (p = 4.4x10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p = 2.7x10−8) and ARHGAP33 (p = 1.3x10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥ 60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
Craniofacial microsomia (CFM, OMIM: 164210), also known as the oculo-auriculo-vertebral spectrum, hemifacial microsomia, or Goldenhar syndrome, is typically characterized by uni-or bilateral microtia and mandibular hypoplasia in addition to ocular, vertebral, and renal abnormalities (Gorlin, Cohen, & Hennekam, 2001; Heike & Hing, 2009). CFM, like other complex diseases, usually occurs sporadically. In multiplex families, the transmission is usually autosomal dominant, often with incomplete penetrance, although autosomal recessive inheritance has also been postulated for some families (Rollnick & Kaye, 1983; Vendramini-Pittoli & Kokitsu-Nakata, 2009). It is associated with high
Obesity is one of the major health problems worldwide. Following healthy dietary patterns can be difficult in some countries due to the lack of availability of certain foods; thus, alternative foods are needed. Our aim was to evaluate the effect of a dietary pattern consisting of fruit, avocado, whole grains, and trout (FAWGT) on postprandial insulinemia and lipemia in obese Colombian subjects. A randomized controlled crossover study was conducted, in which 44 subjects with BMI ≥ 30 kg/m2 followed either a FAWGT diet or a diet high in saturated fat and rich in processed carbohydrates. Levels of lipids and carbohydrates were measured during the postprandial state. The FAWGT diet reduced fasting insulin, VLDL, and HOMA-IR after 8 weeks (p < 0.05), while there was a lower postprandial increase in TG, VLDL, and insulin levels after both acute and chronic intake of FAWGT diet (p < 0.05). The intake of FAWGT-diet was characterized by high consumption of foods rich in fiber, MUFAs, and vitamins C and E (p < 0.05). The consumption of a diet composed of fruit, avocado, whole grains, and trout has emerged as a valid alternative to the foods included in other heart-healthy diets since it improves postprandial lipemia and insulinemia in obese people and has similar beneficial effects to these healthy models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.