The subset of patients who develop critical illness in Covid-19 have extensive inflammation affecting the lungs[PMID: 32526193] and are strikingly different from other patients: immunosuppressive therapy benefits critically-ill patients, but may harm some non-critical cases.[PMID: 32678530] Since susceptibility to life-threatening infections and immune-mediated diseases are both strongly heritable traits, we reasoned that host genetic variation may identify mechanistic targets for therapeutic development in Covid-19.[PMID: 24855243] GenOMICC (Genetics Of Mortality In Critical Care, <a href="https://genomicc.org">genomicc.org</a>) is a global collaborative study to understand the genetic basis of critical illness. Here we report the results of a genome-wide association study (GWAS) in 2244 critically-ill Covid-19 patients from 208 UK intensive care units (ICUs), representing >95% of all ICU beds. Ancestry-matched controls were drawn from the UK Biobank population study and results were confirmed in GWAS comparisons with two other population control groups: the 100,000 genomes project and Generation Scotland. We identify and replicate three novel genome-wide significant associations, at chr19p13.3 (rs2109069, p = 3.98 x 10-12), within the gene encoding dipeptidyl peptidase 9 (DPP9), at chr12q24.13 (rs10735079, p = 1.65 x 10-8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), and at chr21q22.1 (rs2236757, p = 4.99 x 10-8) in the interferon receptor gene IFNAR2. Consistent with our focus on extreme disease in younger patients with less comorbidity, we detect a stronger signal at the known 3p21.31 locus than previous studies (rs73064425, p = 4.77 x 10-30).
Genome-wide association studies have revealed many loci contributing to the variation of complex traits, yet the majority of loci that contribute to the heritability of complex traits remain elusive. Large study populations with sufficient statistical power are required to detect the small effect sizes of the yet unidentified genetic variants. However, the analysis of huge cohorts, like UK Biobank, is challenging. Here we present an atlas of genetic associations for 118 non-binary and 660 binary traits of 452,264 UK Biobank participants of white descent. Results are compiled in a publicly accessible database that allows querying genome-wide association results for 9,113,133 genetic variants, as well as downloading whole GWAS summary statistics for over 30 million imputed genetic variants (>23 billion phenotype-genotype pairs). Our atlas of associations (GeneATLAS, http://geneatlas.roslin.ed.ac.uk) will help researchers to query UK Biobank results in an easy and uniform way without the need to incur in high computational costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.