Background and objectivesAtypical hemolytic uremic syndrome is a form of thrombotic microangiopathy caused by dysregulation of the alternative complement pathway. There is evidence showing complement activation in other thrombotic microangiopathies. The aim of this study was to evaluate complement activation in different thrombotic microangiopathies and to monitor treatment response.Design, setting, participants, & measurementsComplement activation was assessed by exposing endothelial cells to sera or activated-patient plasma—citrated plasma mixed with a control sera pool (1:1)—to analyze C5b-9 deposits by immunofluorescence. Patients with atypical hemolytic uremic syndrome (n=34) at different stages of the disease, HELLP syndrome (a pregnancy complication characterized by hemolysis, elevated liver enzymes, and low platelet count) or severe preeclampsia (n=10), and malignant hypertension (n=5) were included.ResultsAcute phase atypical hemolytic uremic syndrome–activated plasma induced an increased C5b-9 deposition on endothelial cells. Standard and lower doses of eculizumab inhibited C5b-9 deposition in all patients with atypical hemolytic uremic syndrome, except in two who showed partial remission and clinical relapse. Significant fibrin formation was observed together with C5b-9 deposition. Results obtained using activated-plasma samples were more marked and reproducible than those obtained with sera. C5b-9 deposition was also increased with samples from patients with HELLP (all cases) and preeclampsia (90%) at disease onset. This increase was sustained in those with HELLP after 40 days, and levels normalized in patients with both HELLP and preeclampsia after 6–9 months. Complement activation in those with malignant hypertension was at control levels.ConclusionsThe proposed methodology identifies complement overactivation in patients with atypical hemolytic uremic syndrome at acute phase and in other diseases such as HELLP syndrome and preeclampsia. Moreover, it is sensitive enough to individually assess the efficiency of the C5 inhibition treatment.
We present the case of a 21-month-old girl with two rare and life-threatening conditions, atypical haemolytic uraemic syndrome (aHUS) and haemophagocytic lymphohistiocytosis (HLH), triggered by a cytomegalovirus (CMV) infection. Soon after admission, the girl became anuric and required continuous venovenous haemodiafiltration.Initial treatments included methylprednisolone, fibrinogen and plasma infusion (for HLH), plasmapheresis (for thrombotic microangiopathy), immunoglobulins (for inflammation), ganciclovir (for CMV infection) and the antibiotic cefotaxime. On day 5, eculizumab (600 mg) was given for aHUS, with rapid improvement in haematological and nephrological parameters. Despite a subsequent isolated episode of right heart thrombosis that resolved with heparin treatment, the patient showed a favourable response to eculizumab (300 mg/15 days), with improved renal function, normal haematological values, and no treatment complications. In conclusion, eculizumab effectively treated aHUS in this case despite a comorbid immunological disease.
Background Hypomagnesemia with secondary hypocalcemia (HSH) is a rare autosomal recessive disorder caused by pathogenic variants in TRPM6, encoding the channel-kinase Transient Receptor Potential Melastatin type 6. Patients have very low serum Mg2+ levels and suffer from muscle cramps and seizures. Despite genetic testing, a subgroup of HSH patients remains without diagnosis. Methods In this study, two families with a HSH phenotype but negative for TRPM6 pathogenic variants were subjected to whole exome sequencing. Using a complementary combination of biochemical and functional analyses in overexpression systems and patient-derived fibroblasts, the effect of the TRPM7 identified variants on Mg2+ transport was examined. Results For the first time, variants in TRPM7 were identified in two families as potential cause for hereditary hypomagnesemia with secondary hypocalcemia. Patients suffer from seizures and muscle cramps due to magnesium deficiency and episodes of hypocalcemia. In the first family, a splice-site variant caused the incorporation of intron 1 sequences in the TRPM7 mRNA and generated a premature stop codon. As a consequence, patient-derived fibroblasts exhibit reduced cell growth. In the second family, a heterozygous missense variant in the pore domain resulted in decreased TRPM7 channel activity. Conclusion We establish TRPM7 as a prime candidate gene for autosomal dominant hypomagnesemia and secondary hypocalcemia. Screening of unresolved patients with hypomagnesemia and secondary hypocalcemia may further establish TRPM7 pathogenic variants as a novel Mendelian disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.