BackgroundMalaria programmes use Plasmodium falciparum histidine-rich protein-2 (PfHRP2) based rapid diagnostic tests (RDTs) for malaria diagnosis. The deletion of this target antigen could potentially lead to misdiagnosis, delayed treatment and continuation of active transmission.Methods Plasmodium falciparum isolates (n = 1162) collected in Southern Mozambique were assessed by RDTs, microscopy and/or 18SrRNA qPCR. pfhrp2 and pfhrp3 deletions were investigated in isolates from individuals who were negative by RDT but positive by microscopy and/or qPCR (n = 69) using gene-specific PCRs, with kelch13 PCR as the parasite DNA control.ResultsLack of pfhrp2 PCR amplification was observed in one of the 69 isolates subjected to molecular analysis [1.45% (95% CI 0.3–7.8%)].ConclusionsThe low prevalence of pfhrp2 deletions suggests that RDTs will detect the vast majority of the P. falciparum infections. Nevertheless, active surveillance for changing deletion frequencies is required.
Background Mass drug administration (MDA) can rapidly reduce the burden of Plasmodium falciparum (Pf). However, concerns remain about its contribution to select for antimalarial drug resistance. Methods We used Sanger sequencing and real-time PCR to determine the proportion of molecular markers associated with antimalarial resistance (k13, pfpm2, pfmdr1 and pfcrt) in Pf isolates collected before (n = 99) and after (n = 112) the implementation of two monthly MDA rounds with dihydroartemisinin-piperaquine (DHAp) for two consecutive years in Magude district of Southern Mozambique. Results None of the k13 polymorphisms associated with artemisinin resistance were observed in the Pf isolates analyzed. The proportion of Pf isolates with multiple copies of pfpm2, an amplification associated with piperaquine resistance, was similar in pre-(4.9%) and post-MDA
Background Diarrheagenic Escherichia coli (DEC) are among the leading pathogens associated with endemic diarrhea in low income countries. Yet, few epidemiological studies have focused the contribution of enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and diffusely adherent E. coli (DAEC). Methods We assessed the contribution of EHEC, EIEC and DAEC isolated from stool samples from a case-control study conducted in children aged < 5 years in Southern Mozambique between December 2007 and November 2012. The isolates were screened by conventional PCR targeting stx1 and stx2 (EHEC), ial and ipaH (EIEC), and daaE (DAEC) genes. Results We analyzed 297 samples from cases with less-severe diarrhea (LSD) matched to 297 controls, and 89 samples from cases with moderate-to-severe diarrhea (MSD) matched to 222 controls, collected between November 3, 2011 and November 2, 2012. DEC were more common among LSD cases (2.7%, [8/297] of cases vs. 1.3% [4/297] of controls; p = 0.243]) than in MSD cases (0%, [0/89] of cases vs. 0.4%, [1/222] of controls; p = 1.000). Detailed analysis revealed low frequency of EHEC, DAEC or EIEC and no association with diarrhea in all age strata. Although the low frequency, EIEC was predominant in LSD cases aged 24–59 months (4.1% for cases vs. 0% for controls), followed by DAEC in similar frequency for cases and controls in infants (1.9%) and lastly EHEC from one control. Analysis of a subset of samples from previous period (December 10, 2007 and October 31, 2011) showed high frequency of DEC in controls compared to MSD cases (16.2%, [25/154] vs. 11.9%, [14/118], p = 0.383, respectively). Among these, DAEC predominated, being detected in 7.7% of cases vs. 17.6% of controls aged 24–59 months, followed by EIEC in 7.7% of cases vs. 5.9% of controls for the same age category, although no association was observed. EHEC was detected in one sample from cases and two from controls. Conclusions Our data suggests that although EHEC, DAEC and EIEC are less frequent in endemic diarrhea in rural Mozambique, attention should be given to their transmission dynamics (e.g. the role on sporadic or epidemic diarrhea) considering that the role of asymptomatic individuals as source of dissemination remains unknown.
BackgroundGlucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary enzymatic abnormality that affects more than 400 million people worldwide. Most deficient individuals do not manifest any symptoms; however, several precipitant agents—such as fava intake, infections, or several drugs—may trigger acute haemolytic anaemia. Countries should be informed of the prevalence of this enzymatic anomaly within their borders, in order to make safe and appropriate national decisions regarding the use of potentially unsafe drugs for G6PD deficient individuals.MethodsA school-based cross-sectional survey was conducted in three districts in Mozambique, namely Manhiça, located in the south; Mocuba in the centre; and Pemba in the northern tip of the country. G6PD deficiency was evaluated using the CareStart™ diagnostic test, and enzyme activity levels were measured through fluorescence spectrophotometry in deficient individuals. Chi squared and ANOVA tests were used to assess prevalence and mean enzyme activity differences, and logistic regression was used to identify risk factors associated to the deficiency.ResultsG6PD deficiency prevalence estimates were lowest in the northern city of Pemba (8.3%) and among Emakhuwas and Shimakondes, and higher in the centre and southern regions of the country (16.8 and 14.6%, respectively), particularly among Elomwes and Xichanganas. G6PD deficiency was significantly more prevalent among male students than females (OR = 1.4, 95% CI 1.0–1.8, p = 0.02), although enzyme activity levels were not different among deficient individuals from either gender group. Finally, median deficiency levels were found to be more severe among the deficient students from the north (0.7 U/gHg [0.2–0.7] p < 0.001) and south (0.7 U/gHg [0.5–2.5]), compared to those from the centre (1.4 U/gHg [0.6–2.1]).ConclusionThese findings suggest that Mozambique, as a historically high malaria-endemic country has considerable levels of G6PD deficiency, that vary significantly across the country. This should be considered when planning national strategies for the use of licensed drugs that may be associated to haemolysis among G6PD individuals, or prior to the performance of future trials using primaquine and other 8-aminoquinolines derivatives. Registration Number CISM local ethics committee (CIBS-25/013, 4th of December 2013), and the National Ethics Committee of Mozambique (IRB00002657, 28th of February 2014).
Background Low-density Plasmodium falciparum infections prevail in low transmission settings, where immunity is expected to be minimal, suggesting an immune-independent effect on parasite densities. We aimed to describe parasite densities in pregnancy, and determine how gravidity and antibody-mediated immunity affect these, during a period of declining malaria transmission in southern Mozambique. Methods We documented P. falciparum infections at first antenatal care visits (n = 6471) between November 2016 and October 2019 in Ilha Josina (high-to-moderate transmission area), Manhiça (low transmission area), and Magude (pre-elimination area). Two-way interactions in mixed-effects regression models were used to assess gravidity-dependent differences in quantitative PCR-determined P. falciparum positivity rates (PfPRqPCR) and densities, in the relative proportion of detectable infections (pDi) with current diagnostic tests (≥ 100 parasites/μL) and in antimalarial antibodies. Results PfPRqPCR declined from 28 to 13% in Ilha Josina and from 5–7 to 2% in Magude and Manhiça. In primigravidae, pDi was highest in Ilha Josina at the first study year (p = 0.048), which declined with falling PfPRqPCR (relative change/year: 0.41, 95% CI [0.08; 0.73], p = 0.029), with no differences in antibody levels. Higher parasite densities in primigravidae from Ilha Josina during the first year were accompanied by a larger reduction of maternal hemoglobin levels (− 1.60, 95% CI [− 2.49; − 0.72; p < 0.001), than in Magude (− 0.76, 95% CI [− 1.51; − 0.01]; p = 0.047) and Manhiça (− 0.44, 95% CI [− 0.99; 0.10; p = 0.112). In contrast, multigravidae during the transmission peak in Ilha Josina carried the lowest pDi (p = 0.049). As PfPRqPCR declined, geometric mean of parasite densities increased (4.63, 95% CI [1.28; 16.82], p = 0.020), and antibody levels declined among secundigravidae from Ilha Josina. Conclusions The proportion of detectable and clinically relevant infections is the highest in primigravid women from high-to-moderate transmission settings and decreases with declining malaria. In contrast, the falling malaria trends are accompanied by increased parasite densities and reduced humoral immunity among secundigravidae. Factors other than acquired immunity thus emerge as potentially important for producing less detectable infections among primigravidae during marked declines in malaria transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.