This paper examines the hypothesis that surfaces resistant to protein adsorption should also be resistant to the adhesion of bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and the attachment and spreading of mammalian cells (bovine capillary endothelial (BCE) cells). The surfaces tested were those of self-assembled monolayers (SAMs) terminated with derivatives of tri(sarcosine) (Sarc), N-acetylpiperazine, permethylated sorbitol, hexamethylphosphoramide, phosphoryl choline, and an intramolecular zwitterion (-CH2N + (CH3)2CH2CH2CH2SO3 -) (ZW); all are known to resist the adsorption of proteins. There seems to be little or no correlation between the adsorption of protein (fibrinogen and lysozyme) and the adhesion of cells. Surfaces terminated with derivatives of Sarc and N-acetylpiperazine resisted the adhesion of S. aureus and S. epidermidis as well as did surfaces terminated with tri(ethylene glycol). A surface that presented Sarc groups was the only one that resisted the adhesion of BCE cells as well as did a surface terminated with tri(ethylene glycol). The attachment of BCE cells to surfaces could be patterned using SAMs terminated with derivatives of Sarc, N-acetylpiperazine, phosphoramide, and the ZW as the attachment-resistant component and methyl-terminated SAMs as the adhesive component.
This paper describes the design and preparation of thin polymeric films that resist the adsorption of proteins and the adhesion of bacteria to an extent comparable to, or better than, self-assembled monolayers (SAMs) that present tri(ethylene glycol) groups. These polymeric films were prepared by the reaction of a polyamine, for example, poly(ethylenimine), with a SAM that presented interchain carboxylic anhydride groups, and by the subsequent conversion of the amino groups of the polymer to amido groups on reaction with acyl chlorides. Polyamines functionalized with acetyl chloride produced films that resisted the adsorption of protein and the adhesion of bacteria to a useful extent. Functionalization of the polyamine with acyl chlorides that were derivatives of oligo(ethylene glycol) resulted in films that were 1−10 times more resistant than those obtained by acetylation. The removal of hydrogen bond donor groups from the surface of the polyamines upon acylation seems to be important for the generation of films that resist the attachment of proteins and bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.