Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumourigenic properties. Here, we present evidence that the SASP can also induce “paracrine senescence” in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGFβ family ligands, VEGF, CCL2 and CCL20. Amongst them, TGFβ ligands play a major role by regulating p15INK4b and p21CIP1. Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.
The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44 cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36 metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36 metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.
Polycomb group proteins are essential regulators of cell fate decisions during embryogenesis. In mammals, at least five different Cbx proteins (Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8) are known to associate with the core Polycomb repressive complex 1 (PRC1). Here we show that pluripotency and differentiation of mouse embryonic stem cells (ESCs) is regulated by different Cbx-associated PRC1 complexes with unique functions. Maintenance of pluripotency primarily depends on Cbx7, while lineage commitment is orchestrated by Cbx2 and Cbx4. At the molecular level, we have uncovered a Polycomb autoregulatory loop in which Cbx7 represses the expression of prodifferentiation Cbx proteins, thereby maintaining the pluripotent state. We additionally show that the occupancy of Cbx7 on promoters is completely dependent on PRC2 activity but only partially dependent on a functional PRC1 complex. Thus, Cbx proteins confer distinct target selectivity to the PRC1 complex, achieving a balance between the self-renewal and the differentiation of ESCs.
Ovarian cancer (OvCa) is characterized by widespread and rapid metastasis in the peritoneal cavity. Visceral adipocytes promote this process by providing fatty acids (FAs) for tumour growth. However, the exact mechanism of FA transfer from adipocytes to cancer cells remains unknown. This study shows that OvCa cells co-cultured with primary human omental adipocytes express high levels of the FA receptor, CD36, in the plasma membrane, thereby facilitating exogenous FA uptake. Depriving OvCa cells of adipocyte-derived FAs using CD36 inhibitors and short hairpin RNA knockdown prevented development of the adipocyte-induced malignant phenotype. Specifically, inhibition of CD36 attenuated adipocyte-induced cholesterol and lipid droplet accumulation and reduced intracellular reactive oxygen species (ROS) content. Metabolic analysis suggested that CD36 plays an essential role in the bioenergetic adaptation of OvCa cells in the adipocyte-rich microenvironment and governs their metabolic plasticity. Furthermore, the absence of CD36 affected cellular processes that play a causal role in peritoneal dissemination, including adhesion, invasion, migration and anchorage independent growth. Intraperitoneal injection of CD36-deficient cells or treatment with an anti-CD36 monoclonal antibody reduced tumour burden in mouse xenografts. Moreover, a matched cohort of primary and metastatic human ovarian tumours showed upregulation of CD36 in the metastatic tissues, a finding confirmed in three public gene expression datasets. These results suggest that omental adipocytes reprogram tumour metabolism through the upregulation of CD36 in ovarian cancer cells. Targeting the stromal-tumour metabolic interface via CD36 inhibition may prove to be an effective treatment strategy against OvCa metastasis.
Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.Epidermal stem cells ensure that skin homeostasis is maintained. Murine epidermal stem cells are located either at the permanent portion of the hair follicle-termed the bulge-and are exclusively responsible for hair cycling [1][2][3][4] ; or at the junction between the epidermis and the hair follicle (isthmus), and feed into the epidermis and sebaceous glands [5][6][7] . In addition, a continuous proliferation of basal interfollicular epidermal cells ensures daily epidermal maintenance 8 .Bulge stem cells undergo bouts of activation followed by periods of dormancy, to establish hair follicle cycling. Robust TGF-b and Bmp signals act as 'activation breaks', rendering bulge cells dormant during the resting phase of the hair cycle (telogen) [9][10][11] . At the onset of the growth phase (anagen), bulge cells respond to Wnt signals by migrating into the lower proliferative hair germ region, where they contribute to follicle growth [12][13][14][15] . Subsequently, at mid-anagen, the bulge undergoes a second round of activation, which replenishes cells lost at the onset of anagen 2,3 . However, the response of bulge stem cells to activating stimuli is a heterogeneous process, as only a subset of them become active during either stage of activation 12,13 . The nature of such niche heterogeneity is currently unknown. Importantly, perturbing the equilibrium between the responsive and non-responsive stem cell states causes tissue malfunction and increases the risk of carcinogenesis [16][17][18][19][20] .Here, we analysed the role of the molecular clock in fine-tuning the function of epidermal stem cells. The mammalian clock machinery anticipates and synchronizes vital functions related to the physiological circadian needs of the organism 21 . The core molecular clock is established by a positive limb, composed of heterodimers of the transcription fa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.