Density-dependent population growth regulates long-term urban expansion and shapes distinctive socioeconomic trends. Despite a marked heterogeneity in the spatial distribution of the resident population, Mediterranean European countries are considered more homogeneous than countries in other European regions as far as settlement structure and processes of metropolitan growth are concerned. However, rising socioeconomic inequalities among Southern European regions reflect latent demographic and territorial transformations that require further investigation. An integrated assessment of the spatio-temporal distribution of resident populations in more than 1,000 municipalities (1961–2011) was carried out in this study to characterize density-dependent processes of metropolitan growth in Greece. Using geographically weighted regressions, the results of our study identified distinctive local relationships between population density and growth rates over time. Our results demonstrate that demographic growth rates were non-linearly correlated with other variables, such as population density, with positive and negative impacts during the first (1961–1971) and the last (2001–2011) observation decade, respectively. These findings outline a progressive shift over time from density-dependent processes of population growth, reflecting a rapid development of large metropolitan regions (Athens, Thessaloniki) in the 1960s, to density-dependent processes more evident in medium-sized cities and accessible rural regions in the 2000s. Density-independent processes of population growth have been detected in the intermediate study period (1971–2001). This work finally discusses how a long-term analysis of demographic growth, testing for density-dependent mechanisms, may clarify the intrinsic role of population concentration and dispersion in different phases of the metropolitan cycle in Mediterranean Europe.
The usage of cryptocurrencies, together with that of financial automated consultancy, is widely spreading in the last few years. However, automated consultancy services are not yet exploiting the potentiality of this nascent market, which represents a class of innovative financial products that can be proposed by robo-advisors. For this reason, we propose a novel approach to build efficient portfolio allocation strategies involving volatile financial instruments, such as cryptocurrencies. In other words, we develop an extension of the traditional Markowitz model which combines Random Matrix Theory and network measures, in order to achieve portfolio weights enhancing portfolios' risk-return profiles. The results show that overall our model overperforms several competing alternatives, maintaining a relatively low level of risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.