Electrospinning is a widely used processing method to form fibrous tissue engineering scaffolds that mimic the structural features of the native extracellular matrix. Electrospun fibers made of collagen have been sought because it is a natural structural protein that supports cell attachment and growth. Yet, conventional solvents used to electrospin collagen can result in the loss of hydrolytic stability and fiber morphology of the scaffold. This study evaluated the effect of commonly used synthetic and natural crosslinking agents, genipin, glutaraldehyde, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and EDC with N-hydroxysulfosuccinimide (EDC-NHS), on electrospun collagen. Crosslinked collagen scaffolds were assessed for structural integrity in an in vitro immersion study for up to 3 months. Their cytocompatibility was evaluated by human mesenchymal stem cell morphology and proliferation. Our results showed that dimensional stability and cytocompatibility of crosslinked electrospun collagen scaffolds are dependent on the type of crosslinking agent used. Collagen scaffolds treated with EDC and EDC-NHS were structurally stable and retained fiber structure for up to 3 months and were cytocompatible. Therefore, EDC and EDC-NHS are favorable crosslinking agents for electrospun collagen that can be utilized in tissue engineering applications.
Articular cartilage has a limited capacity to heal and, currently, no treatment exists that can restore normal hyaline cartilage. Creating tissue engineering scaffolds that more closely mimic the native extracellular matrix may be an attractive approach. Glycosaminoglycans, which are present in native cartilage tissue, provide signalling and structural cues to cells. This study evaluated the use of a glycosaminoglycan mimetic, derived from cellulose, as a potential scaffold for cartilage repair applications. Fully sulfated sodium cellulose sulfate (NaCS) was initially evaluated in soluble form as an additive to cell culture media. Human mesenchymal stem cell (MSC) chondrogenesis in pellet culture was enhanced with 0.01% NaCS added to induction media as demonstrated by significantly higher gene expression for type II collagen and aggrecan. NaCS was combined with gelatine to form fibrous scaffolds using the electrospinning technique. Scaffolds were characterized for fibre morphology, overall hydrolytic stability, protein/growth factor interaction and for supporting MSC chondrogenesis in vitro. Scaffolds immersed in phosphate buffered saline for up to 56 days had no changes in swelling and no dissolution of NaCS as compared to day 0. Increasing concentrations of the model protein lysozyme and transforming growth factor-β3 were detected on scaffolds with increasing concentrations of NaCS (p < 0.05). MSC chondrogenesis was enhanced on the scaffold with the lowest NaCS concentration as seen with the highest collagen type II production, collagen type II immunostaining, and expression of cartilage-specific genes. These studies demonstrate the feasibility of cellulose sulfate as a scaffolding material for cartilage tissue engineering. Copyright
Articular cartilage has a limited capacity to heal after damage from injury or degenerative disease. Tissue engineering constructs that more closely mimic the native cartilage microenvironment can be utilized to promote repair. Glycosaminoglycans (GAGs), a major component of the cartilage extracellular matrix, have the ability to sequester growth factors due to their level and spatial distribution of sulfate groups. This study evaluated the use of a GAG mimetic, cellulose sulfate, as a scaffolding material for cartilage tissue engineering. Cellulose sulfate can be synthesized to have a similar level and spatial distribution of sulfates as chondroitin sulfate C (CSC), the naturally occurring GAG. This partially sulfated cellulose (pSC) was incorporated into a fibrous gelatin construct by the electrospinning process. Scaffolds were characterized for fiber morphology and overall stability over time in an aqueous environment, growth factor interaction, and for supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. All scaffold groups had micron-sized fibers and maintained overall stability in aqueous environments. Increasing concentrations of the transforming growth factor-beta 3 (TGF-β3) were detected on scaffolds with increasing pSC. MSC chondrogenesis was enhanced on the scaffold with the highest pSC concentration as seen with the highest collagen type II production, collagen type II immunostaining, expression of cartilage-specific genes, and ratio of collagen type II to collagen type I production. These studies demonstrated the potential of pSC sulfate as a scaffolding material for cartilage tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.