The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant of concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be simply explained by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.
The mechanisms and consequences of defective interfering particle (DIP) formation during influenza virus infection remain poorly understood. The development of next-generation sequencing (NGS) technologies has made it possible to identify large numbers of DIP-associated sequences, providing a powerful tool to better understand their biological relevance. However, NGS approaches pose numerous technical challenges, including the precise identification and mapping of deletion junctions in the presence of frequent mutation and base-calling errors, and the potential for numerous experimental and computational artifacts. Here, we detail an Illumina-based sequencing framework and bioinformatics pipeline capable of generating highly accurate and reproducible profiles of DIP-associated junction sequences. We use a combination of simulated and experimental control data sets to optimize pipeline performance and demonstrate the absence of significant artifacts. Finally, we use this optimized pipeline to reveal how the patterns of DIP-associated junction formation differ between different strains and subtypes of influenza A and B viruses and to demonstrate how these data can provide insight into mechanisms of DIP formation. Overall, this work provides a detailed roadmap for high-resolution profiling and analysis of DIP-associated sequences within influenza virus populations. IMPORTANCE Influenza virus defective interfering particles (DIPs) that harbor internal deletions within their genomes occur naturally during infection in humans and during cell culture. They have been hypothesized to influence the pathogenicity of the virus; however, their specific function remains elusive. The accurate detection of DIP-associated deletion junctions is crucial for understanding DIP biology but is complicated by an array of technical issues that can bias or confound results. Here, we demonstrate a combined experimental and computational framework for detecting DIP-associated deletion junctions using next-generation sequencing (NGS). We detail how to validate pipeline performance and provide the bioinformatics pipeline for groups interested in using it. Using this optimized pipeline, we detect hundreds of distinct deletion junctions generated during infection with a diverse panel of influenza viruses and use these data to test a long-standing hypothesis concerning the molecular details of DIP formation.
The specific activity of glutamine synthetase (E.C. 6.3.1.2) of Lemna minor L. is markedly reduced when either ammonium ions or glutamine are present in the growth medium. Combinations of 5 mM ammonia and 5 mM glutamic acid or 5 mM ammonia and 5 mM glutamine as nitrogen source, lead to a 4-5 fold reduction of the maximum activity measurable on 5 mM γ-aminobutyric acid. Analyses of the soluble pool of nitrogen indicate that the reduction in enzyme level is associated with an increase in the pool of glutamine. There is an inverse correlation between the apparent rate of synthesis of glutamine synthetase and the intracellular concentration of glutamine, and this relationship suggests that the glutamine synthetase of Lemna minor is subject to end product repression by the endogenous pool of glutamine.
BackgroundMicrobial communities that inhabit the mosquito body play an import role in host biology and may have potential for mosquito control. However, the forces that shape these microbial communities are poorly understood.MethodsTo gain a better understanding of how host location influences the composition and diversity of mosquito microbiota, we performed a survey of microbial communities in mosquito samples collected from six USA states using HiSeq sequencing of the 16S rRNA gene.ResultsA total of 284 bacterial operational taxonomic units (OTUs) belonging to 14 phyla were detected in nine mosquito species, with Proteobacteria, Firmicutes and Actinobacteria accounting for 95% of total sequences. OTU richness varied markedly within and between mosquito species. The microbial composition and diversity was heavily influenced by the site of mosquito collection, suggesting that host location plays an important role in shaping the mosquito microbiota.ConclusionsVariation in microbial composition and diversity between mosquitoes from different locations may have important implications on vector competence and transmission dynamics of mosquito-borne pathogens. Future studies should investigate the environmental factors responsible for these variations and the role of key bacteria characterized in this study on mosquito biology and their potential application in symbiotic control of mosquito-borne diseases.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-3036-9) contains supplementary material, which is available to authorized users.
Highly aggressive Africanized honeybees (AHB) invaded Puerto Rico (PR) in 1994, displacing gentle European honeybees (EHB) in many locations. Gentle AHB (gAHB), unknown anywhere else in the world, subsequently evolved on the island within a few generations. Here we sequence whole genomes from gAHB and EHB populations, as well as a North American AHB population, a likely source of the founder AHB on PR. We show that gAHB retains high levels of genetic diversity after evolution of gentle behaviour, despite selection on standing variation. We observe multiple genomic loci with significant signatures of selection. Rapid evolution during colonization of novel habitats can generate major changes to characteristics such as morphological or colouration traits, usually controlled by one or more major genetic loci. Here we describe a soft selective sweep, acting at multiple loci across the genome, that occurred during, and may have mediated, the rapid evolution of a behavioural trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.