Rationale Abnormalities in Toll-like receptor (TLR) expression in depression have been inferred in part from observed increases in TLR4 levels in peripheral blood mononuclear cells (PBMCs) and postmortem brains of depressed and suicidal patients. Our previous study found differences in the TLR expression in PBMCs between healthy controls and patients with major depressive disorder. Normalization of increased TLR4 in PBMCs by cognitive behavior psychotherapy has been reported. However, the effects of antidepressants remain unknown. Objectives Changes in TLR1-9 expression levels of PBMCs were examined in 56 patients with MDD. The 17-item Hamilton Depression Rating Scale (HAMD-17) and mRNA expression levels of TLRs were assessed in parallel with a housekeeping gene using qRT-PCR before and after treatment with antidepressants. Results TLR3, TLR4, TLR5, TLR7, TLR8, and TLR9 were expressed at elevated levels in patients with MDD and were significantly decreased by treatment with antidepressants for 4 weeks. Antidepressant treatment completely normalized TLR3, TLR5, TLR7, TLR8, and TLR9 levels, whereas TLR1, TLR2, TLR4, and TLR6 were decreased to below normal levels. A subgroup analysis found that only TLR3 was significantly higher at baseline in the nonremission group. In addition, a multiple linear regression analysis revealed that only low TLR3 before treatment predicted improvement in HAMD-17 scores. Conclusions These findings suggest that antidepressant treatment exerts anti-inflammatory effects in patients with MDD and identify TLR profiles as a predictor of response to antidepressant therapy. Further studies investigating the effects of manipulating individual TLRs on depression are needed to fully elucidate the underlying mechanism.
Inactivated mouse-brain-derived vaccines for Japanese encephalitis virus (JEV) have been used for many years. Recently, attempts have been made to employ cultured Vero cells to replace mouse brain tissues for developing cell-culture-derived vaccines that will be more suitable for worldwide usage. In this study, JEV replication processes in Vero and BHK cells and between stationary and microcarrier culture systems were investigated. Our results demonstrated that a stationary Vero cell culture system produced higher viral titers of JEV, including the Beijin-1 vaccine strain and the attenuated strain CH2195LA, than microcarrier culture did. BHK cells showed less significant differences in their replication kinetics between stationary and microcarrier cultures. Reducing serum concentration during infection led to an overall decrease of JEV production in Vero cells but an increase in BHK cells. By establishing a complete serum-free Vero cell culture, the microcarrier system resulted in a more than 4-log lowered yield compared to that of the stationary culture for JEV production. Thus, the stationary culture is the most efficient system for JEV production from cultured Vero cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.