The influence of emitting diode (LED) treatments for 8 h per day on functional quality of three types of fresh-cut sweet peppers (yellow, red, and green) were investigated after 3, 7, 11, and 14 days postharvest storage on the market shelf at 7 °C. Red LED light (660 nm, 150 μmol m−2 s−1) reduced weight loss to commercially acceptable level levels (≤2.0%) in fresh-cuts of yellow and green sweet peppers at 7 and 11 d, respectively. Blue LED light (450 nm, 100 μmol m−2 s−1) maintained weight loss acceptable for marketing in red fresh-cut sweet peppers up to 11 d. Highest marketability with minimum changes in color difference (∆E) and functional compounds (total phenols, ascorbic acid content, and antioxidant activity) were obtained in yellow and green sweet pepper fresh-cuts exposed to red LED light up to 7 and 11 d, respectively, and for red sweet pepper fresh-cuts exposed to blue LED light for 11 d. Red LED light maintained the highest concentrations of β carotene, chlorophyll, and lycopene in yellow, green, and red sweet pepper fresh-cuts up to 7 d. Similarly, blue LED light showed the highest increase in lycopene concentrations for red sweet pepper fresh-cuts up to 7 d. Red LED (yellow and green sweet peppers) and blue LED (red sweet pepper) lights maintained phenolic compounds by increasing phenylalanine ammonia lyase activity. Thus, the results indicate a new approach to improve functional compounds of different types of fresh-cut sweet pepper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.