The ultrastructural morphology of the cellular and extracellular components of the developing myocardial capillary wall--from the 16-day-gestation fetus of the rat to the 21-day neonate--was examined. A morphometric analysis of plasmalemmal vesicles and of coated vesicles and pits of capillary endothelial cells was performed during the same developmental period. As the lateral extensions of the capillary endothelial cells change from irregular to regular in their thickness during development, there is an increase in the number of plasmalemmal vesicles and a progression from clusters of plasmalemmal vesicles to a uniform distribution in the endothelial cell. The ratio of vesicles which are open to the luminal front, which are "free" in the cytoplasm, or which are open to the abluminal front of the endothelial cell was consistent throughout development. The numerical density of plasmalemmal vesicles demonstrates a gradual and significant increase. In contrast, the numbers of coated vesicles and pits are variable within a very narrow range, and no pattern of increase or decrease is discernible during development. Similarly, there is no change in interendothelial cell junctions, which consist of occluding and primitive adhesive junctional types, during development. The lamina densa of the basal lamina gradually develops from discontinuous, patchy densities along the abluminal surface of the endothelial cells to a continuous and distinct layer by 21 days gestation. The presence of the proteoglycan species in the developing basal lamina was assessed with the cationic dye ruthenium red (RR), and the appearance of RR-marked proteoglycans was found to parallel the appearance of lamina densa material. found to parallel the appearance of lamina densa material. The RR sites appear discontinuously in patches; and later, the RR sites appear in a continuous and regular planar lattice in the lamina rara interna and externa at 21 days gestation. A complete array of RR-stainable anionic sites outside a continuous lamina densa near birth indicates that the basal laminae of developing capillaries in the heart are morphologically, and in part biochemically, mature by the end of the first neonatal week. Our results show that the endothelial cells and the subtending basal lamina of myocardial capillaries gradually mature morphologically during the final days of gestation and the first neonatal week.(ABSTRACT TRUNCATED AT 400 WORDS)
Developing myocardial capillaries from 16-day-gestation fetus to adult undergo several morphological changes including a thinning of the lateral extensions of the capillary endothelial cells, the formation of a basal lamina, and an increase in the number of plasmalemmal vesicles. A decrease in the extracellular space, an increase in the number of capillaries, and a decrease in the capillary diameter were also observed during the developmental period. In view of these ultrastructural changes, a morphometric analysis was made on the developing myocardial wall to demonstrate specific quantitative changes. The volumes which were occupied by capillary endothelial cells, capillary lumina, extracellular space, and myocardial myocytes within a reference volume of myocardium were measured; and we found that 8% of the reference myocardial volume was occupied by capillary endothelial cells, 85% was occupied by myocardial myocytes, 4% was occupied by capillary lumina, and, except for a significant change in extracellular space at 16 days gestation, 3% was occupied by extracellular space. Each volume ratio was found to be nearly constant throughout the studied period. In contrast to this constancy in the volume ratios, other parameters which were measured demonstrated significant changes during the developmental period studied. These overall changes include a 135% increase in capillary density, a 63% increase in luminal surface area of capillary endothelial cells, a 24% decrease in capillary diameter, a 12% decrease in diffusion distance, and a 35% decrease in the diameter of the erythrocyte population.(ABSTRACT TRUNCATED AT 250 WORDS)
A number of recently developed localization techniques are beginning to be applied in the study of endothelial cells and their structural components. In this article we will review a number of these cytochemical approaches as well as their advantages and disadvantages and their applications. The methods will be presented for processing tissues for either L.R. White embedding or semi-thin and thin frozen sections followed by subsequent lectin and immunolabeling for fluorescence and electron microscopic examination. These techniques are easily applied in the localization of perfused exogenous proteins and of endogenous endothelial-associated proteins. The results that can be obtained from such studies are presented and discussed.
The development of the functional components of the myocardial capillary wall was characterized by time-course studies of transendothelial transport of intravascularly injected probes of graded size from 16 days of gestation in the fetal rat to seven days postpartum. Despite the morphological changes occurring in the developing endothelial cells, the interaction of the probes was similar throughout the developmental period studied. The carbon particles were retained within the capillary lumina without any association with interendothelial junctions or with plasmalemmal vesicles. Carbon also was associated with coated vesicles. In contrast to carbon, ferritin was localized sequentially, over 60 sec of circulation, in plasmalemmal vesicles on the lumenal surface, in the cytoplasm, and on the ablumenal surface of the endothelial cells as well as in the interstitial space. Ferritin was located also in coated pits and vesicles and, after 90 sec of circulation, in multivesicular bodies. Within 30 sec of circulation, reaction product of myoglobin was located in plasmalemmal vesicles, coated vesicles, and transendothelial cell channels. Also within 30 sec, myoglobin partially filled the interendothelial space from the capillary lumina to the level of the tight junction. At all developmental ages studied, the interendothelial cell junctions appeared structurally tight and were impermeable to all of the probes. Once ferritin or myoglobin had reached the ablumenal space, the basal lamina did not appear to restrain the passage of the probes. Plasmalemmal vesicles are the capillary structures which transendothelially transport ferritin and myoglobin in developing myocardial capillaries.
In the adult rat, studies by others have shown that capillaries of the heart are lined by a continuous endothelial layer. Some other important mural features are : a distinct and continuous lamina densa of the basal lamina, uniformly thick lateral processes of endothelial cells, adhesive and discontinuously occluding junctions between apposing cells. In addition, coated vesicles and pits are rarely seen, while a high proportion of the endothelial luminal and abluminal surfaces, as well as the cytoplasm, is occupied by plasmalemmal vesicles. These vesicles are more frequently found in the lateral processes than in the perikaryon (Fig. 3). It was my purpose in the present study to examine those morphological features of developing heart capillaries known to be important in capillary function in the adult. The hearts of 16, 19 and 21 day fetal and of 1 and 2 day neonatal Sprague- Dawley rats were removed, diced and fixed by immersion in a dilute Karnovsky fixative and processed routinely for TEM. Several fetal hearts (16 and 19 day) were removed and processed similarly 60 seconds after carbon (Pelikan Ink) had been injected into the umbilical vein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.