Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.
Bloom (BLM) and Werner (WRN) syndrome proteins are members of the RecQ family of SF2 DNA helicases. In this paper, we show that restricting the rotational DNA backbone flexibility, by introducing vinylphosphonate internucleotide linkages in the translocating DNA strand, inhibits efficient duplex unwinding by these enzymes. The human single-stranded DNA binding protein replication protein A (RPA) fully restores the unwinding activity of BLM and WRN on vinylphosphonate-containing substrates while the heterologous single-stranded DNA binding protein from Escherichia coli (SSB) restores the activity only partially. Both RPA and SSB fail to restore the unwinding activity of the SF1 PcrA helicase on modified substrates, implying specific interactions of RPA with the BLM and WRN helicases. Our data highlight subtle differences between SF1 and SF2 helicases and suggest that although RecQ helicases belong to the SF2 family, they are mechanistically more similar to the SF1 PcrA helicase than to other SF2 helicases that are not affected by vinylphosphonate modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.