The behavior of the Cesium (Cs) in Cs-seeded negative ion sources has been investigated experimentally under the beam accelerations of up to 0.5 MeV. The pulse length was extended to 100 s to catch the precise variations in the Cs D2 emission, discharge power, negative ion current, and temperatures in the ion source. The variations of the negative ions were estimated by the beam current and the heat loads in the accelerator. This experiment shows that the buildup of temperature in the chamber walls lead to the evaporation of deposited Cs to enter the plasma region and influenced H − ion production. The H − ion beams were stably sustained by reducing the temperature rise of the chamber wall below 50 ○ C. A stable long pulse beam could be achieved through the temperature control of the surfaces inside the source chamber walls.
Experimental results for the laser produced plasma in an aluminum hollow cylinder target are presented. Observing the plasma formation inside the cylinder, a high-speed camera captured the images of the plasma expanding towards the adjacent walls of target. The optical emission spectrum is obtained for the plasma inside the hollow cylinder and positive singly charged aluminum ions and neutrals are identified from emission spectral lines. Time dependent current signals of the Faraday cup displayed an enlarged signal intensity as the laser power density is increased up to 6.5 GW/cm 2 . Signal arrival times corresponding to fast ions appeared at the onset of the current waveforms when the laser power density exceeded 4.7 GW/cm 2 . For the mass analysis of plasma, an accelerating electric field was applied to separate the ions and the time-of-flight measurements showed positive ion signals with an identified peak to have an estimated mass of 350 amu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.