Mixing patterns in social networks can give us important clues about the structure and functionality of these networks. In the past, a number of measures including variants of assortativity have been used to quantify degree mixing patterns of networks. In this paper, we are interested in observing the heterogeneity of the neighbourhood of nodes in networks. For this purpose, we use the standard deviation of degree differences between a node and its neighbours. We call this measure the 'versatility' of a node. We apply this measure on synthetic and real world networks. We find that among real world networks three classes emerge -(i) Networks where the versatility converges to non-zero values with node degree (ii) Networks where the versatility converges to zero with node degree (iii) Networks where versatility does not converge with node degree. We find that there may be some correlation between this and network density, and the geographical / anatomical nature of networks may also be a factor. We also note that versatility could be applicable to any quantifiable network property, and not just node degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.