Protein modification by small ubiquitin-related modifier proteins (SUMOs) controls diverse cellular functions. Dysregulation of SUMOylation or deSUMOylation processes has been implicated in the development of cancer and neurodegenerative diseases. However, no small-molecule inhibiting protein SUMOylation has been reported so far. Here, we report inhibition of SUMOylation by ginkgolic acid and its analog, anacardic acid. Ginkgolic acid and anacardic acid inhibit protein SUMOylation both in vitro and in vivo without affecting in vivo ubiquitination. Binding assays with a fluorescently labeled probe showed that ginkgolic acid directly binds E1 and inhibits the formation of the E1-SUMO intermediate. These studies will provide not only a useful tool for investigating the roles of SUMO conjugations in a variety of pathways in cells, but also a basis for the development of drugs targeted against diseases involving aberrant SUMOylation.
Oseltamivir (Tamiflu) and zanamivir (Relenza), two extensively used clinically effective anti-influenza drugs, are viral sialidase (also known as neuraminidase) inhibitors that prevent the release of progeny virions and thereby limit the spread of infection. Recently mortalities and neuropsychiatric events have been reported with the use of oseltamivir, especially in pediatric cases in Japan, suggesting that these drugs might also inhibit endogenous enzymes involved in sialic acid metabolism, including sialidase, sialyltransferase, and CMPsynthase, in addition to their inhibitory effects on the viral sialidase. The possible inhibition could account for some of the rare side effects of oseltamivir. However, there has been little direct evidence in regard to the sensitivities of animal sialidases to these drugs. Here, we examined whether these inhibitors might indeed affect the activities of human sialidases, which differ in primary structures and enzyme properties but possess tertiary structures similar to those of the viral enzymes. Using recombinant enzymes corresponding to the four human sialidases identified so far, we found that oseltamivir carboxylate scarcely affected the activities of any of the sialidases, even at 1 mM, while zanamivir significantly inhibited the human sialidases NEU3 and NEU2 in the micromolar range (K i , 3.7 ؎ 0.48 and 12.9 ؎ 0.07 M, respectively), providing a contrast to the low nanomolar concentrations at which these drugs block the activity of the viral sialidases.
Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N-H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.
Sialidase-resistant ganglioside analogues having biological activities similar to those of natural gangliosides are expected to be important probes for clarifying the biological functions of gangliosides. Focusing on difluoromethylene-linked (CF 2 -linked) α(2,3)sialylgalactose as a core structure of sialidase-resistant ganglioside mimics, we have developed novel, stereocontrolled, and efficient methodologies to synthesize CF 2 -sialosides based on Ireland−Claisen rearrangement. CF 2 -linked α(2,3)sialylgalactose and CF 2 -linked GM4 were synthesized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.