A series of 1,4-phenylene-bridged ZP-HP hybrid porphyrins (ZP = zinc porphyrin, HP = free-base porphyrin) 1-8 ZH have been prepared in which an electron-donating ZP moiety is kept constant and electron-accepting HP moieties are varied by introducing electron-accepting substituents, so that the energy gap for charge separation, ZP-1HP*--> ZP(+)-HP-, covers a range of about 0.9 eV in DMF. Here selective excitation at the HP moiety was employed to avoid complication in the determination of electron transfer rates derived from energy transfer, 1ZP*-HP --> ZP-1HP*. Definitive evidence for the electron transfer has been obtained in three solvents (benzene, THF, and DMF) through picosecond-femtosecond transient absorption studies, which have allowed the determination of the rates of the photoinduced charge separation, ZP-1HP* --> ZP(+)-HP-, and subsequent thermal charge recombination ZP(+)-HP- --> ZP-HP. Dyad 1ZH in THF exhibits a biphasic fluorescence decay that indicates thermal repopulation of the ZP-1HP* from ZP(+)-HP-; this has been also supported by the transient absorption spectra. On this ground, the energy levels of the ZP(+)-HP- ion pairs have been estimated. Similar biphasic fluorescence decay has been observed for 5 ZH in benzene; this allows furhter estimation of the energy level of the ZP(+)-HP- ion pairs. The free-energy-gap dependence (energy-gap law) has been probed from the normal to the upper limit region for the rate of the charge separation alone, and only the inverted region for the rate of the charge recombination. It was not possible to reproduce both energy-gap dependencies of the charge separation and the charge recombination assuming common parameter values for the reorganization energy and electronic interaction responsible for the electron transfer with the classical Marcus equation. Although both energy-gap dependencies can be approximately reproduced by means of the simplified semiclassical equation, which takes into consideration the effect of the high-frequency vibrations replaced by one mode of averaged frequency, many features, which include the effects of solvent polarity, electron-tunneling matrix element, and so forth on the energy-gap law, are considerably different from those of the previous studied porphyrin-quinone systems with weaker inter-chromophore electronic interactions.
Spin-on-carbon hard mask (SOC HM) has been used in semiconductor manufacturing since 45nm node as an alternative carbon hard mask process to chemical vapor deposition (CVD). As advancement of semiconductor to 2X nm nodes and beyond, multiple patterning technology is used and planarization of topography become more important and challenging ever before. In order to develop next generation SOC, one of focuses is planarization of topography. SOC with different concepts for improved planarization and the influence of thermal flow temperature, crosslink, film shrinkage, baking conditions on planarization and filling performance are described in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.